Zeros and asymptotics of polynomials satisfying three-term recurrence relations with complex coefficients
Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 309-333

Voir la notice de l'article provenant de la source Math-Net.Ru

Under very general conditions on the complex coefficients of a three-term recurrence relation, it is proved that 'almost all' zeros of the polynomials generated by these relations 'accumulate' on a certain segment in the complex plane. From this result follow the convergence of diagonal Padé approximants and a generalization of Van Vleck's theorem on the convergence of $S$-fractions. Another interesting application is an extension of the so-called Nevai–Blumenthal class of polynomials $M(a,2b)$ to the case when $a,b\in{\mathbb C}$.
@article{SM_1995_80_2_a3,
     author = {D. Barrios and G. L. Lopes and E. Torrano},
     title = {Zeros and asymptotics of polynomials satisfying three-term recurrence relations with complex coefficients},
     journal = {Sbornik. Mathematics},
     pages = {309--333},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a3/}
}
TY  - JOUR
AU  - D. Barrios
AU  - G. L. Lopes
AU  - E. Torrano
TI  - Zeros and asymptotics of polynomials satisfying three-term recurrence relations with complex coefficients
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 309
EP  - 333
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_2_a3/
LA  - en
ID  - SM_1995_80_2_a3
ER  - 
%0 Journal Article
%A D. Barrios
%A G. L. Lopes
%A E. Torrano
%T Zeros and asymptotics of polynomials satisfying three-term recurrence relations with complex coefficients
%J Sbornik. Mathematics
%D 1995
%P 309-333
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_80_2_a3/
%G en
%F SM_1995_80_2_a3
D. Barrios; G. L. Lopes; E. Torrano. Zeros and asymptotics of polynomials satisfying three-term recurrence relations with complex coefficients. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 309-333. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a3/