On the Riemann--Hilbert problem for first order elliptic systems in multiply connected domains
Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 287-307
Voir la notice de l'article provenant de la source Math-Net.Ru
The Riemann–Hilbert problem for arbitrary first-order elliptic systems with continuous coefficients in the principal part in multiply connected domains is studied. The problem is considered both in Sobolev and Hölder spaces, and a condition for the Fredholm property and a formula for the index are obtained. Also considered are refinements of the differential properties of solutions depending on the properties of the coefficients, the right-hand sides, and the boundary of the domain.
@article{SM_1995_80_2_a2,
author = {M. M. Sirazhudinov},
title = {On the {Riemann--Hilbert} problem for first order elliptic systems in multiply connected domains},
journal = {Sbornik. Mathematics},
pages = {287--307},
publisher = {mathdoc},
volume = {80},
number = {2},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a2/}
}
TY - JOUR AU - M. M. Sirazhudinov TI - On the Riemann--Hilbert problem for first order elliptic systems in multiply connected domains JO - Sbornik. Mathematics PY - 1995 SP - 287 EP - 307 VL - 80 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_80_2_a2/ LA - en ID - SM_1995_80_2_a2 ER -
M. M. Sirazhudinov. On the Riemann--Hilbert problem for first order elliptic systems in multiply connected domains. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 287-307. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a2/