On strongly regular extensions of generalized quadrangles
Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 497-505 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The parameters $s$, $t$ of a generalized quadrangle are said to be classical if $s=p^\alpha$ and $t=p^\beta$ for some prime number $p$ and nonnegative integers $\alpha$ and $\beta$. A escription is obtained for the possible parameters of strongly regular graphs in which the neighborhoods of the vertices are generalized quadrangles with quasiclassical parameters.
@article{SM_1995_80_2_a11,
     author = {A. A. Makhnev},
     title = {On strongly regular extensions of generalized quadrangles},
     journal = {Sbornik. Mathematics},
     pages = {497--505},
     year = {1995},
     volume = {80},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a11/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - On strongly regular extensions of generalized quadrangles
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 497
EP  - 505
VL  - 80
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_2_a11/
LA  - en
ID  - SM_1995_80_2_a11
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T On strongly regular extensions of generalized quadrangles
%J Sbornik. Mathematics
%D 1995
%P 497-505
%V 80
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_80_2_a11/
%G en
%F SM_1995_80_2_a11
A. A. Makhnev. On strongly regular extensions of generalized quadrangles. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 497-505. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a11/

[1] Cameron P., Hughes D. R., Pasini A., “Extended generalized quadrangles”, Geom. Dedic., 35 (1990), 193–228 | DOI | MR | Zbl

[2] Zyulyarkina N. D., Makhnev A. A., “O silno regulyarnykh lokalno-reshetchatykh grafakh”, Problemy teoreticheskoi i prikladnoi matematiki, Inform. materialy, Uro RAN, Sverdlovsk, 1992

[3] Shult E., “Groups, polar spaces and related structures”, Math. Centre Tracts, 57 (1974), 130–161 | MR

[4] Payne S. E., Thas J. A., Finite Generalized Quadrangles, Pitman, Boston, 1984 | MR | Zbl

[5] Brauver A. E., van Lint I. Kh., “Silno regulyarnye grafy i chastichnye geometrii”, Kiberneticheskii sbornik, 24 (1987), 186–229

[6] Buekenhout F., Hubaut X., “Locally polar spaces and related rank 3 groups”, J. Algebra, 45 (1977), 391–434 | DOI | MR | Zbl