Asymptotic behavior of the~$s$-step method of steepest descent for eigenvalue problems in Hilbert space
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 467-495
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			On the example of the Rayleigh functional a new approach is developed to the study of the asymptotic behavior of the $s$-step method, based on the proof of the existence of limit iteration parameters of the method in even (odd) iterations. This approach may be used to analyze the asymptotic behavior of the $s$-step method in the optimization of arbitrary sufficiently smooth functionals defined on a Hilbert space.
			
            
            
            
          
        
      @article{SM_1995_80_2_a10,
     author = {P. P. Zhuk},
     title = {Asymptotic behavior of the~$s$-step method of steepest descent for eigenvalue problems in {Hilbert} space},
     journal = {Sbornik. Mathematics},
     pages = {467--495},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a10/}
}
                      
                      
                    TY - JOUR AU - P. P. Zhuk TI - Asymptotic behavior of the~$s$-step method of steepest descent for eigenvalue problems in Hilbert space JO - Sbornik. Mathematics PY - 1995 SP - 467 EP - 495 VL - 80 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_80_2_a10/ LA - en ID - SM_1995_80_2_a10 ER -
P. P. Zhuk. Asymptotic behavior of the~$s$-step method of steepest descent for eigenvalue problems in Hilbert space. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 467-495. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a10/
