Asymptotic behavior of the~$s$-step method of steepest descent for eigenvalue problems in Hilbert space
Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 467-495

Voir la notice de l'article provenant de la source Math-Net.Ru

On the example of the Rayleigh functional a new approach is developed to the study of the asymptotic behavior of the $s$-step method, based on the proof of the existence of limit iteration parameters of the method in even (odd) iterations. This approach may be used to analyze the asymptotic behavior of the $s$-step method in the optimization of arbitrary sufficiently smooth functionals defined on a Hilbert space.
@article{SM_1995_80_2_a10,
     author = {P. P. Zhuk},
     title = {Asymptotic behavior of the~$s$-step method of steepest descent for eigenvalue problems in {Hilbert} space},
     journal = {Sbornik. Mathematics},
     pages = {467--495},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a10/}
}
TY  - JOUR
AU  - P. P. Zhuk
TI  - Asymptotic behavior of the~$s$-step method of steepest descent for eigenvalue problems in Hilbert space
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 467
EP  - 495
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_2_a10/
LA  - en
ID  - SM_1995_80_2_a10
ER  - 
%0 Journal Article
%A P. P. Zhuk
%T Asymptotic behavior of the~$s$-step method of steepest descent for eigenvalue problems in Hilbert space
%J Sbornik. Mathematics
%D 1995
%P 467-495
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_80_2_a10/
%G en
%F SM_1995_80_2_a10
P. P. Zhuk. Asymptotic behavior of the~$s$-step method of steepest descent for eigenvalue problems in Hilbert space. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 467-495. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a10/