On discrete models of the~quantum Boltzmann equation
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 271-285
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A certain class of discrete models for the quantum Boltzmann equation is proposed. In the case of fermions a theorem of existence and uniqueness in the large is proved. In the case of bosons such a theorem is proved for models with the maximum principle. For one simple model analytic solution of the traveling wave problem is given.
			
            
            
            
          
        
      @article{SM_1995_80_2_a1,
     author = {V. V. Vedenyapin and I. V. Mingalev and O. V. Mingalev},
     title = {On discrete models of the~quantum {Boltzmann} equation},
     journal = {Sbornik. Mathematics},
     pages = {271--285},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a1/}
}
                      
                      
                    V. V. Vedenyapin; I. V. Mingalev; O. V. Mingalev. On discrete models of the~quantum Boltzmann equation. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 271-285. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a1/
