@article{SM_1995_80_2_a1,
author = {V. V. Vedenyapin and I. V. Mingalev and O. V. Mingalev},
title = {On discrete models of the~quantum {Boltzmann} equation},
journal = {Sbornik. Mathematics},
pages = {271--285},
year = {1995},
volume = {80},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a1/}
}
V. V. Vedenyapin; I. V. Mingalev; O. V. Mingalev. On discrete models of the quantum Boltzmann equation. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 271-285. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a1/
[1] Karleman T., Matematicheskie zadachi kineticheskoi teorii gazov, IL, M., 1960
[2] Broadwell J. E., “Shock Structure in a Simple Discrete Velocity Gas”, The Phys. of Fluids, 7:8 (1964), 1243 | DOI | Zbl
[3] Godunov S. K., Sultangazin U. M., “O diskretnykh modelyakh kineticheskogo uravneniya Boltsmana”, UMN, 36:3 (1971), 1–51 | MR
[4] Vedenyapin V. V., O teoreme suschestvovaniya v tselom reshenii zadachi Koshi nekotorykh giperbolicheskikh nelineinykh sistem uravnenii, Preprint No 42, IPM im. Keldysha AN SSSR, 1973
[5] Vedenyapin V. V., “O razreshimosti v tselom zadachi Koshi dlya diskretnykh modelei uravneniya Boltsmana”, DAN SSSR, 215:1 (1974), 21–23 | MR
[6] Gatignol R., Theoric cinetique des gaz a repartion descrete de Vitesses, Lecture Notes in Physics, 36, 1975 | MR
[7] Gatignol R., “Kinetic theoric for a discrete velocity gas and application to the shock structure”, Phys. of fluids, 18 (1975), 153–161 | DOI | Zbl
[8] Cabannes H., “Global solution for the Discrete Boltzmann Equation”, XIII International Symposium on rarefied gas dynamics, V. 1 (Novosibirsk, July 5–9, 1982), Plenum Press, N.-Y.–London, 1985, 3–17
[9] Illner R., “On discrete models for the Boltzmann equation”, Math. Meth. in the Appl. Sci., 1 (1979), 187–203 | DOI | MR
[10] Kaniel S., Shinbrot M., “The Boltzmann Equation. II: Some Discrete Velocity Models”, J. Mech., 19 (1978), 581–593 | MR
[11] Bellomo N., de Socio L., “On the Discrete Boltzmann Equation for Binary Gas Mixtures”, XIII International Symp. on rarepied gas dynamics, V. II (Novosibirsk, July 5–9, 1982), Plenum Press, N.-Y.–London, 1985, 1269–1276
[12] Shinbrot M., Cercignani C., “Global existence for some discrete velocity models”, Comm. Partial Diff. Equat., 12 (1987), 307–310 | DOI | MR
[13] Di Perna R., Lions P.-L., “On the Cauchy problem for the Boltzmann: global existence and weak stability”, Ann. Math., 130 (1989), 321–366 | DOI | MR
[14] Bobylev A. V., Vedenyapin V. V., “O printsipe maksimuma dlya diskretnykh modelei uravneniya Boltsmana”, DAN SSSR, 233:4 (1977), 519–522 | MR | Zbl
[15] Vedenyapin V. V., “Differentsialnye formy v prostranstvakh bez normy. Teorema o edinstvennosti $H$-funktsii Boltsmana”, UMN, 43:1 (1986), 159–179 | MR
[16] Suslin V. M., Teorema suschestvovaniya i edinstvennosti dlya neodnorodnogo kineticheskogo uravneniya Yulinga–Ulenbeka (sluchai statistiki Fermi–Diraka), Preprint No 56, IPM im. Keldysha AN SSSR, 1989 | MR
[17] Dobrushin R. L., Maslova N. B., Sinai Ya. G., Sukhov Yu. M., “Dinamicheskie sistemy statisticheskoi mekhaniki i kineticheskie uravneniya, III”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 2, VINITI, M., 1985, 233–307 | MR
[18] Illner R., “Global existence results for discrete velocity models of the B.E. in several dimension”, J. Mecan. Th. Appl., 4 (1982), 611–622 | MR
[19] Arkerid L., Esposito R., Pulvirenti M., “The Boltzmann Equation for Weakly Inhomogeneous Data”, Comm. Math. Phys., 111 (1987), 393–407 | DOI | MR
[20] Beale J. T., “Large-time behavior of discrete velocity B.E.”, Comm. Math. Phys., 102 (1985), 217–235 | DOI | MR | Zbl
[21] Dedonne, Osnovy sovremennogo analiza, Mir, M., 1964