On discrete models of the~quantum Boltzmann equation
Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 271-285

Voir la notice de l'article provenant de la source Math-Net.Ru

A certain class of discrete models for the quantum Boltzmann equation is proposed. In the case of fermions a theorem of existence and uniqueness in the large is proved. In the case of bosons such a theorem is proved for models with the maximum principle. For one simple model analytic solution of the traveling wave problem is given.
@article{SM_1995_80_2_a1,
     author = {V. V. Vedenyapin and I. V. Mingalev and O. V. Mingalev},
     title = {On discrete models of the~quantum {Boltzmann} equation},
     journal = {Sbornik. Mathematics},
     pages = {271--285},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a1/}
}
TY  - JOUR
AU  - V. V. Vedenyapin
AU  - I. V. Mingalev
AU  - O. V. Mingalev
TI  - On discrete models of the~quantum Boltzmann equation
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 271
EP  - 285
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_2_a1/
LA  - en
ID  - SM_1995_80_2_a1
ER  - 
%0 Journal Article
%A V. V. Vedenyapin
%A I. V. Mingalev
%A O. V. Mingalev
%T On discrete models of the~quantum Boltzmann equation
%J Sbornik. Mathematics
%D 1995
%P 271-285
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_80_2_a1/
%G en
%F SM_1995_80_2_a1
V. V. Vedenyapin; I. V. Mingalev; O. V. Mingalev. On discrete models of the~quantum Boltzmann equation. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 271-285. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a1/