The smallest field of definition of a subgroup of the group $\mathrm{PSL}_2$
Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 179-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

As previously proved by the author, for each semisimple algebraic group of adjoint type that is dense in the Zariski topology there exists a smallest field of definition which is an invariant of the class of commensurable subgroups. In the present paper an algorithm is given for finding the smallest field of definition of a dense finitely generated subgroup of the group $\mathrm{PSL}_2(\mathbb{C})$. A criterion for arithmeticity of a lattice in $\mathrm{PSL}_2(\mathbb{R})$ or $\mathrm{PSL}_2(\mathbb{C})$ in terms of this field is presented.
@article{SM_1995_80_1_a8,
     author = {\`E. B. Vinberg},
     title = {The smallest field of definition of a~subgroup of the~group $\mathrm{PSL}_2$},
     journal = {Sbornik. Mathematics},
     pages = {179--190},
     year = {1995},
     volume = {80},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_1_a8/}
}
TY  - JOUR
AU  - È. B. Vinberg
TI  - The smallest field of definition of a subgroup of the group $\mathrm{PSL}_2$
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 179
EP  - 190
VL  - 80
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_1_a8/
LA  - en
ID  - SM_1995_80_1_a8
ER  - 
%0 Journal Article
%A È. B. Vinberg
%T The smallest field of definition of a subgroup of the group $\mathrm{PSL}_2$
%J Sbornik. Mathematics
%D 1995
%P 179-190
%V 80
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_80_1_a8/
%G en
%F SM_1995_80_1_a8
È. B. Vinberg. The smallest field of definition of a subgroup of the group $\mathrm{PSL}_2$. Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 179-190. http://geodesic.mathdoc.fr/item/SM_1995_80_1_a8/

[1] Vinberg E. B., “Koltsa opredeleniya plotnykh podgrupp poluprostykh lineinykh grupp”, Izv. AN SSSR. Ser. matem., 35:1 (1971), 45–55 | MR | Zbl

[2] Takeuchi K., “A characterization of arithmetic Fuchsian groups”, J. Math. Soc. Japan, 27 (1975), 600–612 | DOI | MR | Zbl

[3] Procesi C., “The invariant theory of nxn matrices”, Adv. in Math., 19 (1976), 306–381 | DOI | MR | Zbl

[4] Reid A. W., “A note on trace-fields of Kleinian groups”, Bull. London Math. Soc., 22 (1990), 349–352 | DOI | MR | Zbl

[5] Neumann W. D., Reid A. W., Arithmetic of hyperbolic 3-manifolds, Preprint 90-5, Ohio State Univ. Math. Research Inst., 1990

[6] Hilden H. M., Lozano M. T., Montesinos-Amilibia J. M., A characterization of arithmetic subgroups of $\operatorname {SL}(2, R)$ and $\operatorname {SL}(2, C)$, Preprint

[7] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundam. napr., 5, VINITI, 1989, 137–309 | MR