The smallest field of definition of a~subgroup of the~group $\mathrm{PSL}_2$
Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 179-190

Voir la notice de l'article provenant de la source Math-Net.Ru

As previously proved by the author, for each semisimple algebraic group of adjoint type that is dense in the Zariski topology there exists a smallest field of definition which is an invariant of the class of commensurable subgroups. In the present paper an algorithm is given for finding the smallest field of definition of a dense finitely generated subgroup of the group $\mathrm{PSL}_2(\mathbb{C})$. A criterion for arithmeticity of a lattice in $\mathrm{PSL}_2(\mathbb{R})$ or $\mathrm{PSL}_2(\mathbb{C})$ in terms of this field is presented.
@article{SM_1995_80_1_a8,
     author = {\`E. B. Vinberg},
     title = {The smallest field of definition of a~subgroup of the~group $\mathrm{PSL}_2$},
     journal = {Sbornik. Mathematics},
     pages = {179--190},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_1_a8/}
}
TY  - JOUR
AU  - È. B. Vinberg
TI  - The smallest field of definition of a~subgroup of the~group $\mathrm{PSL}_2$
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 179
EP  - 190
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_1_a8/
LA  - en
ID  - SM_1995_80_1_a8
ER  - 
%0 Journal Article
%A È. B. Vinberg
%T The smallest field of definition of a~subgroup of the~group $\mathrm{PSL}_2$
%J Sbornik. Mathematics
%D 1995
%P 179-190
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_80_1_a8/
%G en
%F SM_1995_80_1_a8
È. B. Vinberg. The smallest field of definition of a~subgroup of the~group $\mathrm{PSL}_2$. Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 179-190. http://geodesic.mathdoc.fr/item/SM_1995_80_1_a8/