Existence of solutions with singularities for the~maximal surface equation in Minkowski space
Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 87-104
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Omega$ be a domain in $\mathbb{R}^n$, and $A=(a_1,\dots,a_N)$ a finite tuple of points in $\Omega$. The problem is considered of the existence of a solution for the maximal surface equation in $\Omega\setminus A$, where Dirichlet boundary data are given on $\partial\Omega$, and the flows of the time gradient on the graph of the solution in the Minkowski space $\mathbb{R}_1^{n+1}$ are given at the points $a_i$.
@article{SM_1995_80_1_a4,
author = {A. A. Klyachin and V. M. Miklyukov},
title = {Existence of solutions with singularities for the~maximal surface equation in {Minkowski} space},
journal = {Sbornik. Mathematics},
pages = {87--104},
publisher = {mathdoc},
volume = {80},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_80_1_a4/}
}
TY - JOUR AU - A. A. Klyachin AU - V. M. Miklyukov TI - Existence of solutions with singularities for the~maximal surface equation in Minkowski space JO - Sbornik. Mathematics PY - 1995 SP - 87 EP - 104 VL - 80 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_80_1_a4/ LA - en ID - SM_1995_80_1_a4 ER -
A. A. Klyachin; V. M. Miklyukov. Existence of solutions with singularities for the~maximal surface equation in Minkowski space. Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 87-104. http://geodesic.mathdoc.fr/item/SM_1995_80_1_a4/