Existence of solutions with singularities for the~maximal surface equation in Minkowski space
Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 87-104

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega$ be a domain in $\mathbb{R}^n$, and $A=(a_1,\dots,a_N)$ a finite tuple of points in $\Omega$. The problem is considered of the existence of a solution for the maximal surface equation in $\Omega\setminus A$, where Dirichlet boundary data are given on $\partial\Omega$, and the flows of the time gradient on the graph of the solution in the Minkowski space $\mathbb{R}_1^{n+1}$ are given at the points $a_i$.
@article{SM_1995_80_1_a4,
     author = {A. A. Klyachin and V. M. Miklyukov},
     title = {Existence of solutions with singularities for the~maximal surface equation in {Minkowski} space},
     journal = {Sbornik. Mathematics},
     pages = {87--104},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_1_a4/}
}
TY  - JOUR
AU  - A. A. Klyachin
AU  - V. M. Miklyukov
TI  - Existence of solutions with singularities for the~maximal surface equation in Minkowski space
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 87
EP  - 104
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_1_a4/
LA  - en
ID  - SM_1995_80_1_a4
ER  - 
%0 Journal Article
%A A. A. Klyachin
%A V. M. Miklyukov
%T Existence of solutions with singularities for the~maximal surface equation in Minkowski space
%J Sbornik. Mathematics
%D 1995
%P 87-104
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_80_1_a4/
%G en
%F SM_1995_80_1_a4
A. A. Klyachin; V. M. Miklyukov. Existence of solutions with singularities for the~maximal surface equation in Minkowski space. Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 87-104. http://geodesic.mathdoc.fr/item/SM_1995_80_1_a4/