On some classes of smooth transformations in the space of symmetric matrices
Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 75-86
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mathrm{Sym}(n)$ be the space of $n$-dimensional real symmetric matrices. Two families of infinitely smooth transformations in $\mathrm{Sym}(n)$ are considered. First, the family of transformations $$ {\mathcal F}\colon\operatorname{Sym}(n)\to\operatorname{Sym}(n), $$ having the following property: for any matrix $X\in\mathrm{Sym}(n)$ and an orthogonal matrix $C$ such that $C^{-1}XC$ is a diagonal matrix, $C^{-1}\mathcal{F}(X)C$ is also a diagonal matrix. Second, the family of transformations $$ {\mathcal G}\colon\operatorname{Sym}(n)\to\operatorname{Sym}(n), $$ such that the diagonal entries of the matrix $C^{-1}\mathcal{G}(X)C$ are zero whenever the matrix $C^{-1}XC$ is diagonal.
@article{SM_1995_80_1_a3,
author = {N. V. Ilyushechkin},
title = {On some classes of smooth transformations in the~space of symmetric matrices},
journal = {Sbornik. Mathematics},
pages = {75--86},
year = {1995},
volume = {80},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_80_1_a3/}
}
N. V. Ilyushechkin. On some classes of smooth transformations in the space of symmetric matrices. Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 75-86. http://geodesic.mathdoc.fr/item/SM_1995_80_1_a3/
[1] Lure A. I., Teoriya uprugosti, Nauka, M., 1970 | Zbl
[2] Ilyushechkin N. V., “Ob odnom klasse gladkikh matrichnoznachnykh funktsii”, UMN, 40:1 (1985), 201–202 | MR | Zbl
[3] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl
[4] Ilyushechkin N. V., “Diskriminant kharakteristicheskogo mnogochlena normalnoi matritsy”, Matem. zametki, 51:3 (1992), 16–23 | MR | Zbl
[5] Malgranzh B., Idealy differentsiruemykh funktsii, Mir, M., 1968
[6] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR