On some classes of smooth transformations in the~space of symmetric matrices
Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 75-86

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathrm{Sym}(n)$ be the space of $n$-dimensional real symmetric matrices. Two families of infinitely smooth transformations in $\mathrm{Sym}(n)$ are considered. First, the family of transformations $$ {\mathcal F}\colon\operatorname{Sym}(n)\to\operatorname{Sym}(n), $$ having the following property: for any matrix $X\in\mathrm{Sym}(n)$ and an orthogonal matrix $C$ such that $C^{-1}XC$ is a diagonal matrix, $C^{-1}\mathcal{F}(X)C$ is also a diagonal matrix. Second, the family of transformations $$ {\mathcal G}\colon\operatorname{Sym}(n)\to\operatorname{Sym}(n), $$ such that the diagonal entries of the matrix $C^{-1}\mathcal{G}(X)C$ are zero whenever the matrix $C^{-1}XC$ is diagonal.
@article{SM_1995_80_1_a3,
     author = {N. V. Ilyushechkin},
     title = {On some classes of smooth transformations in the~space of symmetric matrices},
     journal = {Sbornik. Mathematics},
     pages = {75--86},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_1_a3/}
}
TY  - JOUR
AU  - N. V. Ilyushechkin
TI  - On some classes of smooth transformations in the~space of symmetric matrices
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 75
EP  - 86
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_1_a3/
LA  - en
ID  - SM_1995_80_1_a3
ER  - 
%0 Journal Article
%A N. V. Ilyushechkin
%T On some classes of smooth transformations in the~space of symmetric matrices
%J Sbornik. Mathematics
%D 1995
%P 75-86
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_80_1_a3/
%G en
%F SM_1995_80_1_a3
N. V. Ilyushechkin. On some classes of smooth transformations in the~space of symmetric matrices. Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 75-86. http://geodesic.mathdoc.fr/item/SM_1995_80_1_a3/