On some classes of smooth transformations in the~space of symmetric matrices
Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 75-86
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathrm{Sym}(n)$ be the space of $n$-dimensional real symmetric matrices. Two families of infinitely smooth transformations in $\mathrm{Sym}(n)$ are considered. First, the family of transformations
$$
{\mathcal F}\colon\operatorname{Sym}(n)\to\operatorname{Sym}(n),
$$
having the following property: for any matrix $X\in\mathrm{Sym}(n)$ and an orthogonal matrix $C$ such that $C^{-1}XC$ is a diagonal matrix, $C^{-1}\mathcal{F}(X)C$ is also a diagonal matrix. Second, the family of transformations
$$
{\mathcal G}\colon\operatorname{Sym}(n)\to\operatorname{Sym}(n),
$$
such that the diagonal entries of the matrix $C^{-1}\mathcal{G}(X)C$ are zero whenever the matrix $C^{-1}XC$ is diagonal.
@article{SM_1995_80_1_a3,
author = {N. V. Ilyushechkin},
title = {On some classes of smooth transformations in the~space of symmetric matrices},
journal = {Sbornik. Mathematics},
pages = {75--86},
publisher = {mathdoc},
volume = {80},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_80_1_a3/}
}
N. V. Ilyushechkin. On some classes of smooth transformations in the~space of symmetric matrices. Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 75-86. http://geodesic.mathdoc.fr/item/SM_1995_80_1_a3/