On the spectrum of the pencil in the Verigin–Muskat problem
Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 33-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions close to necessary are obtained for the existence of a`classical solution of the Verigin–Muskat contact problem with a free boundary on a small time interval. Solvability conditions are obtained in terms of the spectrum of model parabolic initial-boundary value problems in a dihedral angle that contain the time derivative in the boundary condition.
@article{SM_1995_80_1_a2,
     author = {E. V. Radkevich},
     title = {On the spectrum of the~pencil in {the~Verigin{\textendash}Muskat} problem},
     journal = {Sbornik. Mathematics},
     pages = {33--73},
     year = {1995},
     volume = {80},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_1_a2/}
}
TY  - JOUR
AU  - E. V. Radkevich
TI  - On the spectrum of the pencil in the Verigin–Muskat problem
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 33
EP  - 73
VL  - 80
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_1_a2/
LA  - en
ID  - SM_1995_80_1_a2
ER  - 
%0 Journal Article
%A E. V. Radkevich
%T On the spectrum of the pencil in the Verigin–Muskat problem
%J Sbornik. Mathematics
%D 1995
%P 33-73
%V 80
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_80_1_a2/
%G en
%F SM_1995_80_1_a2
E. V. Radkevich. On the spectrum of the pencil in the Verigin–Muskat problem. Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 33-73. http://geodesic.mathdoc.fr/item/SM_1995_80_1_a2/

[1] Radkevich E. V., “Ob operatornykh puchkakh kontaktnoi zadachi Stefana”, Matem. zametki, 47:2 (1990), 89–101 | MR | Zbl

[2] Kondratev V. A., “O gladkosti reshenii zadachi Dirikhle dlya ellipticheskikh uravnenii vtorogo poryadka v kusochno-gladkikh oblastyakh”, Differents. uravneniya, 6 (1970), 1831–1843 | MR | Zbl

[3] Solonnikov V. A., “O razreshimosti klassicheskikh nachalno-kraevykh zadach uravneniya teploprovodnosti v dvugrannom ugle”, Zapiski nauch. sem. LOMI, 138, no. 16, Nauka, L., 1984, 146–180 | MR | Zbl

[4] Radkevich E. V., “Usloviya dopolnitelnosti dlya elliptiko-parabolicheskikh kontaktnykh zadach so svobodnoi granitsei”, Tr. MIAN, 3, Nauka, M., 1988, 101–126 | MR | Zbl

[5] Solonnikov V. A., “Apriornye otsenki dlya uravnenii vtorogo poryadka parabolicheskogo tipa”, Tr. MIAN, 70, Nauka, M., 1964, 133–212 | MR | Zbl

[6] Radkevich E. V., “Operatornyi puchok kontaktnoi zadachi Verigina”, DAN SSSR, 310:6 (1990), 1303–1307 | MR | Zbl

[7] Radkevich E. V., “O spektre puchka zadachi Verigina–Masket”, Matem. zametki, 49:3 (1991), 77–90 | MR | Zbl

[8] Hanzawa E. I., “Classical solutions of the Stefan problem”, Tohoku Math. J. The second Ser., 33:3 (1985), 297–335 | DOI | MR

[9] Grisvard R., Elliptic problems in nonsmooth domain, Pitman Publishing INC., Boston, 1985 | MR | Zbl

[10] Radkevich E. V., O tochnom spektre puchka zadachi Stefana, Dep. VINITI. 1989. No 7614-B 89, 1989, S. 50

[11] Bagirov L. A., Myshkis P. L., “Integralnye predstavleniya fundamentalnoi sistemy reshenii odnogo klassa uravnenii vysshego poryadka”, Differents. uravneniya, 23 (1987), 1072–1074 | MR | Zbl

[12] Bagirov L. A., Myshkis P. L., “Apriornaya otsenka resheniya kraevykh zadach dlya ellipticheskogo uravneniya vtorogo poryadka v oblastyakh s rebrami”, Izv. vuzov. Matematika, 1990, no. 10, 56–58 | MR | Zbl

[13] Radkevich E. V., Melikulov A. S., Kraevye zadachi so svobodnoi granitsei, FAN, Tashkent, 1988 | MR | Zbl

[14] Beitman T., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1973

[15] Nörlund N. E., “Sure les equations lineaires aux difference finites a coefficients rationnels”, Acta Math., 40 (1916), 191–249 | DOI | MR | Zbl

[16] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978 | MR | Zbl

[17] Radkevich E. V., Melikulov A. S., Zadachi so svobodnoi granitsei, FAN, Tashkent, 1990

[18] Korn G., Korn T., Spravochnik po matematike, Nauka, M., 1978

[19] Milne-Thomson L. M., The calculus of finite difference, Mac. Millan, London, 1951 | MR

[20] Radkevich E. V., “Ob usloviyakh suschestvovaniya klassicheskogo resheniya modifitsirovannoi zadachi Stefana (zakon Gibbsa–Tomsona)”, Matem. sb., 183:2 (1992), 77–101 | MR | Zbl

[21] Solonnikov V. A., Frolova E. V., “O zadache s tretim kraevym usloviem dlya uravneniya Laplasa v ploskom ugle i ee prilozheniya k parabolicheskim zadacham”, Algebra i analiz, 2:4 (1990), 213–241 | MR

[22] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | MR | Zbl

[23] Prësdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979 | MR

[24] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Gëldera i printsip ${\operatorname {Max}}$ Mirinda–Agmonta dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI | MR | Zbl