New examples of integrable Hamiltonian systems on semidirect sums of Lie algebras
Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 247-254
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the argument translation method enables the construction of completely integrable Hamiltonian systems on $\mathrm{Ad}^*$-orbits of the semidirect sums $G\underset\rho{+}V$, where $G$ is an exceptional simple Lie algebra, and $\rho\colon G\to\mathrm{GL}(V)$ an irreducible representation.
@article{SM_1995_80_1_a12,
author = {B. Priwitzer},
title = {New examples of integrable {Hamiltonian} systems on semidirect sums of {Lie} algebras},
journal = {Sbornik. Mathematics},
pages = {247--254},
publisher = {mathdoc},
volume = {80},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_80_1_a12/}
}
B. Priwitzer. New examples of integrable Hamiltonian systems on semidirect sums of Lie algebras. Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 247-254. http://geodesic.mathdoc.fr/item/SM_1995_80_1_a12/