The tensor BMO-property of the sequence of partial sums of a multiple Fourier series
Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 211-224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general assertion, relating the phenomenon of rectangular oscillation of the sequence of rectangular partial sums of a multiple Fourier series and the strong summability of that series, is established. For the sequence of rectangular partial sums of a multiple Fourier series an analog is obtained of the BMO-property of multiple Fourier series, related to the tensor product of these spaces.
@article{SM_1995_80_1_a10,
     author = {V. A. Rodin},
     title = {The tensor {BMO-property} of the~sequence of partial sums of a~multiple {Fourier} series},
     journal = {Sbornik. Mathematics},
     pages = {211--224},
     year = {1995},
     volume = {80},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_1_a10/}
}
TY  - JOUR
AU  - V. A. Rodin
TI  - The tensor BMO-property of the sequence of partial sums of a multiple Fourier series
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 211
EP  - 224
VL  - 80
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_1_a10/
LA  - en
ID  - SM_1995_80_1_a10
ER  - 
%0 Journal Article
%A V. A. Rodin
%T The tensor BMO-property of the sequence of partial sums of a multiple Fourier series
%J Sbornik. Mathematics
%D 1995
%P 211-224
%V 80
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_80_1_a10/
%G en
%F SM_1995_80_1_a10
V. A. Rodin. The tensor BMO-property of the sequence of partial sums of a multiple Fourier series. Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 211-224. http://geodesic.mathdoc.fr/item/SM_1995_80_1_a10/

[1] Rodin V. A., “Potochechnaya silnaya summiruemost kratnykh ryadov Fure”, Matem. zametki, 50:1 (1991), 148–150 | MR | Zbl

[2] Gogoladze L. D., “O $(H,k)$-summiruemosti kratnykh trigonometricheskikh ryadov Fure”, Izv. AN SSSR. Seriya matem., 41:4 (1977), 889–908 | MR

[3] Rodin V. A., “Pryamougolnaya ostsillyatsiya posledovatelnosti chastnykh summ kratnykh ryadov Fure i otsutstvie BMO-svoistva”, Matem. zametki, 52:2 (1992), 152–154 | MR | Zbl

[4] Rodin V. A., “BMO-svoistvo chastnykh summ ryadov Fure”, DAN SSSR, 319:5 (1991), 1079–1081 | MR | Zbl

[5] Rodin V. A., “The space BMO and strong means of Fourier series”, Analysis math., 16:4 (1990), 291–302 | DOI | MR | Zbl

[6] Rodin V. A., Metricheskie svoistva integriruemoi funktsii i silnaya summiruemost dvoinykh ryadov Fure, Dep. 6302 V-90, Voronezh, 1990

[7] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965 | MR

[8] Garnet Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[9] Coifman R. R., Weiss G., “Extentions of Hardy sraces and their use in analysis”, Bull. Amer. Math. Soc., 83 (1977), 569–645 | DOI | MR | Zbl

[10] Pich., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967 | MR

[11] Fefferman C., “On the divergence of multiple Fourier Series”, Bull. Amer. Math. Soc., 77:2 (1971), 191–195 | DOI | MR | Zbl

[12] Chang A., Fefferman C., “A continuous version of duality $H^1$ with BMO on the bidisc”, Ann. Math., 112:1 (1980), 179–201 | DOI | MR | Zbl