@article{SM_1995_80_1_a1,
author = {M. V. Zaicev},
title = {The base rank of varieties of {Lie} algebras},
journal = {Sbornik. Mathematics},
pages = {15--31},
year = {1995},
volume = {80},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_80_1_a1/}
}
M. V. Zaicev. The base rank of varieties of Lie algebras. Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 15-31. http://geodesic.mathdoc.fr/item/SM_1995_80_1_a1/
[1] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1986 | MR
[2] Bahturin Y., “On identical relations in free polynilpotent algebras”, J. London Math. Soc., 20 (1980), 39–52 | DOI | MR
[3] Volichenko I. B., “Ob odnom mnogoobrazii algebr Li, svyazannom so standartnymi tozhdestvami, I”, Izv. AN BSSR. Ser. fiz.-mat. nauk, 1980, no. 1, 23–30 | MR | Zbl
[4] Volichenko I. B., “Ob odnom mnogoobrazii algebr Li, svyazannom so standartnymi tozhdestvami, II”, Izv. AN BSSR. Ser. fiz.-mat. nauk, 1980, no. 2, 22–29 | MR
[5] Zaitsev M. V., “Standartnoe tozhdestvo v spetsialnykh mnogoobraziyakh algebr Li”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1993, no. 1, 53–56 | MR
[6] Vais A. Ya., “O spetsialnykh mnogoobraziyakh algebr Li”, Algebra i logika, 28 (1989), 29–40 | MR | Zbl
[7] Neiman Kh., Mnogoobraziya grupp, Mir, M., 1969 | MR
[8] Razmyslov Yu. P., “O konechnoi baziruemosti tozhdestv matrichnoi algebry vtorogo poryadka nad polem kharakteristiki nul”, Algebra i logika, 12 (1973), 83–113 | MR | Zbl
[9] Shmelkin A. L., “Spleteniya algebr Li i ikh primenenie v teorii grupp”, Tr. MMO, 29, URSS, M., 1973, 247–260 | MR | Zbl
[10] Mischenko S. P., “Rost mnogoobrazii algebr Li”, UMN, 45 (1990), 25–45 | Zbl
[11] Scheunert M., The theory of Lie superalgebras, Lect. Notes in Math., 716, Sringer-Verlag, 1979 | MR
[12] Scheunert M., Nahm W., Rittenberg V., “Classification of all simple graded Lie algebras whose Lie algebra is reductive, I”, J. Math. Phys., 17 (1976), 1626–1639 | DOI | MR | Zbl
[13] Scheunert M., Nahm W., Rittenberg V., “Classification of all simple graded Lie algebras whose Lie algebra is reductive, II”, J. Math. Phys., 17 (1976), 1640–1644 | DOI | MR | Zbl
[14] Braun A., “The Jacobson radical in a finitely generated PI algebra”, Bull. Amer. Math. Soc., 7 (1982), 385–386 | DOI | MR | Zbl
[15] Maltsev A. I., “O predstavlenii beskonechnykh algebr”, Matem. sb., 13 (1943), 263–286 | MR | Zbl