Some properties of the~spectrum of nonlinear equations of Sturm--Liouville type
Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 1-14
Voir la notice de l'article provenant de la source Math-Net.Ru
The question is considered of the number of stationary points of the Rayleigh functional
\begin{equation}
R(x)=R(r,p,q,\Gamma_0,w_r,w_0,x)=\dfrac{\|x\|_{q(w_0)}}{\|x^{(r)}\|_{p(w_r^{-1})}},
\qquad x\big|_{\partial I}\in \Gamma _0,
\end{equation}
which make up the spectrum of the nonlinear equation of Sturm–Liouville type
$(1$
\begin{equation}
\begin{gathered}
(-1)^{r+1}\biggl(\dfrac{(x^{(r)})_{(p)}(t)}{w_r(t)}\biggr)^{(r)}+
\lambda^q w_{0}(t)x_{(q)}(t)=0,
\\
x\big|_{\partial I}\in \Gamma_0, \qquad
\frac{(x^{(r)})_{(p)}}{w_r}\bigg|_{\partial I} \in \Gamma_1,
\end{gathered}
\end{equation}
where $\bigl(h(\,\cdot\,)\bigr)_{(s)}=|h(\,\cdot\,)|^{s-1}\operatorname{sgn}(h(\,\cdot\,))$.
Under various assumptions on the parameters it is proved that a solution with $n$ sign changes interior to $I=[0,1]$ is unique up to normalization.
@article{SM_1995_80_1_a0,
author = {A. P. Buslaev},
title = {Some properties of the~spectrum of nonlinear equations of {Sturm--Liouville} type},
journal = {Sbornik. Mathematics},
pages = {1--14},
publisher = {mathdoc},
volume = {80},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_80_1_a0/}
}
A. P. Buslaev. Some properties of the~spectrum of nonlinear equations of Sturm--Liouville type. Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/SM_1995_80_1_a0/