Some properties of the~spectrum of nonlinear equations of Sturm--Liouville type
Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 1-14

Voir la notice de l'article provenant de la source Math-Net.Ru

The question is considered of the number of stationary points of the Rayleigh functional \begin{equation} R(x)=R(r,p,q,\Gamma_0,w_r,w_0,x)=\dfrac{\|x\|_{q(w_0)}}{\|x^{(r)}\|_{p(w_r^{-1})}}, \qquad x\big|_{\partial I}\in \Gamma _0, \end{equation} which make up the spectrum of the nonlinear equation of Sturm–Liouville type $(1$ \begin{equation} \begin{gathered} (-1)^{r+1}\biggl(\dfrac{(x^{(r)})_{(p)}(t)}{w_r(t)}\biggr)^{(r)}+ \lambda^q w_{0}(t)x_{(q)}(t)=0, \\ x\big|_{\partial I}\in \Gamma_0, \qquad \frac{(x^{(r)})_{(p)}}{w_r}\bigg|_{\partial I} \in \Gamma_1, \end{gathered} \end{equation} where $\bigl(h(\,\cdot\,)\bigr)_{(s)}=|h(\,\cdot\,)|^{s-1}\operatorname{sgn}(h(\,\cdot\,))$. Under various assumptions on the parameters it is proved that a solution with $n$ sign changes interior to $I=[0,1]$ is unique up to normalization.
@article{SM_1995_80_1_a0,
     author = {A. P. Buslaev},
     title = {Some properties of the~spectrum of nonlinear equations of {Sturm--Liouville} type},
     journal = {Sbornik. Mathematics},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_1_a0/}
}
TY  - JOUR
AU  - A. P. Buslaev
TI  - Some properties of the~spectrum of nonlinear equations of Sturm--Liouville type
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1
EP  - 14
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_1_a0/
LA  - en
ID  - SM_1995_80_1_a0
ER  - 
%0 Journal Article
%A A. P. Buslaev
%T Some properties of the~spectrum of nonlinear equations of Sturm--Liouville type
%J Sbornik. Mathematics
%D 1995
%P 1-14
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_80_1_a0/
%G en
%F SM_1995_80_1_a0
A. P. Buslaev. Some properties of the~spectrum of nonlinear equations of Sturm--Liouville type. Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/SM_1995_80_1_a0/