\begin{equation} \begin{gathered} (-1)^{r+1}\biggl(\dfrac{(x^{(r)})_{(p)}(t)}{w_r(t)}\biggr)^{(r)}+ \lambda^q w_{0}(t)x_{(q)}(t)=0, \\ x\big|_{\partial I}\in \Gamma_0, \qquad \frac{(x^{(r)})_{(p)}}{w_r}\bigg|_{\partial I} \in \Gamma_1, \end{gathered} \end{equation} where $\bigl(h(\,\cdot\,)\bigr)_{(s)}=|h(\,\cdot\,)|^{s-1}\operatorname{sgn}(h(\,\cdot\,))$. Under various assumptions on the parameters it is proved that a solution with $n$ sign changes interior to $I=[0,1]$ is unique up to normalization.
@article{SM_1995_80_1_a0,
author = {A. P. Buslaev},
title = {Some properties of the~spectrum of nonlinear equations of {Sturm{\textendash}Liouville} type},
journal = {Sbornik. Mathematics},
pages = {1--14},
year = {1995},
volume = {80},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_80_1_a0/}
}
A. P. Buslaev. Some properties of the spectrum of nonlinear equations of Sturm–Liouville type. Sbornik. Mathematics, Tome 80 (1995) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/SM_1995_80_1_a0/
[1] Kurant R., Gilbert D., Metody matematicheskoi fiziki, T. 1, GTTI, M., 1933
[2] Gantmakher F. R., Krein M. G., Ostsillyatsionnye matritsy, yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M., 1950
[3] Lyusternik L. A., “Sur une classe d'equations differentielles nonlinearities”, Matem. sb., 2(44) (1937), 1143–1168
[4] Lyusternik L. A., “Quelques remarques suplementaires sur les equations nonlineaires du type de Sturm–Liouville”, Matem. sb., 4(46) (1938), 227–232
[5] Strett D. V. (Lord Relei), Teoriya zvuka, T. 1, 2, GITTL, M., 1955
[6] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, FM, M., 1959
[7] Pokhozhaev S. I., “O sobstvennykh funktsiyakh uravneniya $\Delta u-\lambda f(u)=0$”, DAN SSSR, 165:1 (1965), 36–39 | MR | Zbl
[8] Pinkus A., “$n$-widths of Sobolev spases in $L^p$”, Constructive Approximations, 1:1 (1985), 15–62 | DOI | MR | Zbl
[9] Buslaev A. P., Tikhomirov V. M., “Nekotorye voprosy nelineinogo analiza i teoriya priblizhenii”, DAN SSSR, 283:1 (1985), 13–18 | MR
[10] Tikhomirov V. M., “A. N. Kolmogorov i teoriya priblizhenii”, UMN, 44:1(265) (1989), 83–122 | MR
[11] Buslaev A. P., “Ekstremalnye zadachi teorii priblizhenii i nelineinye kolebaniya”, DAN SSSR, 305:6 (1989), 1289–1294 | MR | Zbl
[12] Buslaev A. P., Tikhomirov V. M., “Spektry nelineinykh uravnenii i poperechniki sobolevskikh klassov”, Matem. sb., 181:12 (1990), 1587–1606 | MR
[13] Chan Tkhi Le, Zadachi vosstanovleniya funktsionalov po konechnoi i beskonechnoi informatsii, Dissertatsiya ...kand. fiz. -mat. nauk, MGU, 1986
[14] Zhensykbaev A. A., “Monosplainy minimalnoi normy i nailuchshie kvadraturnye formuly”, UMN, 36:4 (1981), 109–159 | MR
[15] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, T. 1, Nauka, M., 1982 ; Т. 2, Наука, М., 1984 | MR
[16] Lavrentev M. M., Lyusternik L. A., Osnovy variatsionnogo ischisleniya, T. 1, 2, ONTI, M.–L., 1935
[17] Akhromeeva T. S., Kurdyumov S. P., Malinetskii G. G., Samarskii A. A., Nestatsionarnye struktury i diffuznyi khaos, Nauka, M., 1992 | MR | Zbl