Quotient spaces modulo tori and transitive actions of Lie groups
Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1375-1388
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that a transitive locally effective action of a compact connected simply-connected Lie group on a manifold of the form $K/A$, where $K$ is a non-simple compact connected simply-connected Lie group all of whose simple factors have rank greater than 5 and $A$ is a torus in $K$ in general position of corank 1, is equivalent to the original action of the group $K$.
@article{SM_1995_186_9_a9,
author = {A. N. Shchetinin},
title = {Quotient spaces modulo tori and transitive actions of {Lie} groups},
journal = {Sbornik. Mathematics},
pages = {1375--1388},
publisher = {mathdoc},
volume = {186},
number = {9},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_9_a9/}
}
A. N. Shchetinin. Quotient spaces modulo tori and transitive actions of Lie groups. Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1375-1388. http://geodesic.mathdoc.fr/item/SM_1995_186_9_a9/