Quotient spaces modulo tori and transitive actions of Lie groups
Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1375-1388 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that a transitive locally effective action of a compact connected simply-connected Lie group on a manifold of the form $K/A$, where $K$ is a non-simple compact connected simply-connected Lie group all of whose simple factors have rank greater than 5 and $A$ is a torus in $K$ in general position of corank 1, is equivalent to the original action of the group $K$.
@article{SM_1995_186_9_a9,
     author = {A. N. Shchetinin},
     title = {Quotient spaces modulo tori and transitive actions of {Lie} groups},
     journal = {Sbornik. Mathematics},
     pages = {1375--1388},
     year = {1995},
     volume = {186},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_9_a9/}
}
TY  - JOUR
AU  - A. N. Shchetinin
TI  - Quotient spaces modulo tori and transitive actions of Lie groups
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1375
EP  - 1388
VL  - 186
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_9_a9/
LA  - en
ID  - SM_1995_186_9_a9
ER  - 
%0 Journal Article
%A A. N. Shchetinin
%T Quotient spaces modulo tori and transitive actions of Lie groups
%J Sbornik. Mathematics
%D 1995
%P 1375-1388
%V 186
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1995_186_9_a9/
%G en
%F SM_1995_186_9_a9
A. N. Shchetinin. Quotient spaces modulo tori and transitive actions of Lie groups. Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1375-1388. http://geodesic.mathdoc.fr/item/SM_1995_186_9_a9/

[1] Onischik A. L., “O tranzitivnykh deistviyakh na borelevskikh mnogoobraziyakh”, Voprosy teorii grupp i gomologicheskoi algebry, Yaroslavl, 1977, 143–155 | Zbl

[2] Schetinin A. N., “O faktorprostranstvakh kompaktnykh grupp Li po toram”, Matem. zametki, 47 (1990), 113–120 | Zbl

[3] Adams Dzh., Lektsii po gruppam Li, Mir, M., 1979 | MR

[4] Onischik A. L., “O topologii nekotorykh kompleksnykh odnorodnykh prostranstv”, Mnogomernyi kompleksnyi analiz, Krasnoyarsk, 1985, 109–121 | Zbl

[5] Kassels Dzh., Ratsionalnye kvadratichnye formy, Mir, M., 1982 | MR

[6] Kac V. G., “Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups”, Invent. Math., 80 (1985), 69–79 | DOI | MR | Zbl

[7] Rashevskii P. K., “O veschestvennykh kogomologiyakh odnorodnykh prostranstv”, UMN, 24 (1969), 23–90 | MR

[8] Onischik A. L., “O nekotorykh topologicheskikh invariantakh odnorodnykh prostranstv”, Matem. zametki, 12 (1972), 761–768 | MR | Zbl

[9] Shchetinin A. N., “On a class of compact homogeneous spaces, II”, Annals of Global Analysis and Geometry, 8 (1990), 227–247 | DOI | MR | Zbl

[10] Papadima S., “Rigidity properties of compact Lie groups modulo maximal tori”, Math. Ann., 275 (1986), 637–652 | DOI | MR | Zbl

[11] Onischik A. L., Topologiya tranzitivnykh grupp preobrazovanii, Fizmatlit, M., 1995 | MR | Zbl