A multidimensional analogue of a~theorem of F.~Riesz
Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1363-1374

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a multidimensional analogue of a theorem of F. Riesz is proved which deals with conditions for the representability of a given function as the indefinite integral of a function of bounded variation. Our result is formulated via the notion of Vitali essential variation of functions of several variables, which was introduced in an earlier paper by the author.
@article{SM_1995_186_9_a8,
     author = {F. A. Talalian},
     title = {A multidimensional analogue of a~theorem of {F.~Riesz}},
     journal = {Sbornik. Mathematics},
     pages = {1363--1374},
     publisher = {mathdoc},
     volume = {186},
     number = {9},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_9_a8/}
}
TY  - JOUR
AU  - F. A. Talalian
TI  - A multidimensional analogue of a~theorem of F.~Riesz
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1363
EP  - 1374
VL  - 186
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_9_a8/
LA  - en
ID  - SM_1995_186_9_a8
ER  - 
%0 Journal Article
%A F. A. Talalian
%T A multidimensional analogue of a~theorem of F.~Riesz
%J Sbornik. Mathematics
%D 1995
%P 1363-1374
%V 186
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_9_a8/
%G en
%F SM_1995_186_9_a8
F. A. Talalian. A multidimensional analogue of a~theorem of F.~Riesz. Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1363-1374. http://geodesic.mathdoc.fr/item/SM_1995_186_9_a8/