A necessary condition for all the zeros of an entire function of exponential type to lie in a curvilinear half-plane
Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1353-1362
Cet article a éte moissonné depuis la source Math-Net.Ru
Under the assumption that the integral $$ \int_{\mathbb R}\frac{\log|F(x)|}{1+x^2}\,dx $$ exists, a condition necessary for all the zeros of the entire function $F(z)$ of exponential type to lie in the curvilinear half-plane $\operatorname{Im}z\leqslant\ (\geqslant)\ h(|\operatorname{Re}z|)$ (where $h(t)$ is a regularly varying function) is obtained.
@article{SM_1995_186_9_a7,
author = {A. M. Sedletskii},
title = {A necessary condition for all the~zeros of an~entire function of exponential type to lie in a~curvilinear half-plane},
journal = {Sbornik. Mathematics},
pages = {1353--1362},
year = {1995},
volume = {186},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_9_a7/}
}
TY - JOUR AU - A. M. Sedletskii TI - A necessary condition for all the zeros of an entire function of exponential type to lie in a curvilinear half-plane JO - Sbornik. Mathematics PY - 1995 SP - 1353 EP - 1362 VL - 186 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_1995_186_9_a7/ LA - en ID - SM_1995_186_9_a7 ER -
A. M. Sedletskii. A necessary condition for all the zeros of an entire function of exponential type to lie in a curvilinear half-plane. Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1353-1362. http://geodesic.mathdoc.fr/item/SM_1995_186_9_a7/
[1] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956
[2] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl
[3] Dvait G. B., Tablitsy integralov i drugie matematicheskie formuly, Nauka, M., 1977
[4] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, GIFML, M., 1962 | MR
[5] Boas R. P., Entire functions, Academic press, New York, 1954 | MR | Zbl
[6] Sedletskii A. M., “On zeros of Laplace transforms of finite measure”, Integral Transforms and Special Functions, 1:1 (1993), 51–59 | DOI | MR