On algebraic threefolds whose hyperplane sections are Enriques surfaces
Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1341-1352
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the following problem is solved: given a singular Fano variety $X$, find a smooth Enriques surface which is an ample Cartier divisor on $X$. The results obtained enable one to construct, using singular Fano varieties, examples of threefolds whose hyperplane sections are Enriques surfaces. They can be used in the classification of log-Fano varieties of (Fano) index 1.
@article{SM_1995_186_9_a6,
author = {Yu. G. Prokhorov},
title = {On algebraic threefolds whose hyperplane sections are {Enriques} surfaces},
journal = {Sbornik. Mathematics},
pages = {1341--1352},
publisher = {mathdoc},
volume = {186},
number = {9},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_9_a6/}
}
Yu. G. Prokhorov. On algebraic threefolds whose hyperplane sections are Enriques surfaces. Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1341-1352. http://geodesic.mathdoc.fr/item/SM_1995_186_9_a6/