On algebraic threefolds whose hyperplane sections are Enriques surfaces
Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1341-1352

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the following problem is solved: given a singular Fano variety $X$, find a smooth Enriques surface which is an ample Cartier divisor on $X$. The results obtained enable one to construct, using singular Fano varieties, examples of threefolds whose hyperplane sections are Enriques surfaces. They can be used in the classification of log-Fano varieties of (Fano) index 1.
@article{SM_1995_186_9_a6,
     author = {Yu. G. Prokhorov},
     title = {On algebraic threefolds whose hyperplane sections are {Enriques} surfaces},
     journal = {Sbornik. Mathematics},
     pages = {1341--1352},
     publisher = {mathdoc},
     volume = {186},
     number = {9},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_9_a6/}
}
TY  - JOUR
AU  - Yu. G. Prokhorov
TI  - On algebraic threefolds whose hyperplane sections are Enriques surfaces
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1341
EP  - 1352
VL  - 186
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_9_a6/
LA  - en
ID  - SM_1995_186_9_a6
ER  - 
%0 Journal Article
%A Yu. G. Prokhorov
%T On algebraic threefolds whose hyperplane sections are Enriques surfaces
%J Sbornik. Mathematics
%D 1995
%P 1341-1352
%V 186
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_9_a6/
%G en
%F SM_1995_186_9_a6
Yu. G. Prokhorov. On algebraic threefolds whose hyperplane sections are Enriques surfaces. Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1341-1352. http://geodesic.mathdoc.fr/item/SM_1995_186_9_a6/