@article{SM_1995_186_9_a5,
author = {P. V. Paramonov},
title = {Some new criteria for uniform approximability of functions by rational fractions},
journal = {Sbornik. Mathematics},
pages = {1325--1340},
year = {1995},
volume = {186},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_9_a5/}
}
P. V. Paramonov. Some new criteria for uniform approximability of functions by rational fractions. Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1325-1340. http://geodesic.mathdoc.fr/item/SM_1995_186_9_a5/
[1] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR
[2] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl
[3] Paramonov P. V., “O garmonicheskikh approksimatsiyakh v $C^1$-norme”, Matem. sb., 181:10 (1990), 1341–1365 | MR
[4] O'Farrell A. G., “Estimates for capacities and approximation in Lipschitz norms”, J. Reine Angew. Math., 311/312 (1979), 101–115 | MR | Zbl
[5] O'Farrell A. G., “Rational approximation and weak analyticity, II”, Math. Ann., 281 (1988), 169–176 | DOI | MR | Zbl
[6] O'Farrell A. G., “Rational approximation in Lipschitz norms, II”, Proc. Royal. Irish. Acad., 79A:11 (1979), 103–114 | MR
[7] Verdera J., “On $C^m$-rational approximation”, Proc. Amer. Math. Soc., 97:4 (1986), 621–625 | DOI | MR | Zbl
[8] Verdera J., Removability, capacity and approximation, Preprint No 1, Universitat Autonoma de Barcelona, 1994 | MR | Zbl
[9] Melnikov M. S., “Otsenka integrala Koshi po analiticheskoi krivoi”, Matem. sb., 71:4 (1966), 503–513 | MR
[10] Verdera J., “$C^m$-approximation by solutions of elliptic equations, and Calderon–Zygmund operators”, Duke Math., 55 (1987), 157–187 | DOI | MR | Zbl