The global dimension theorem for non-unital and certain other separable $C^*$-algebras
Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1223-1239
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article we prove that the global homological dimension of a separable $C^*$-algebra containing a bi-ideal of finite codimension that cannot be complemented as a subalgebra is at least 2. As a consequence we also obtain this bound for the global dimension of separable $C^*$-algebras without an identity and for finite-dimensional separable $\operatorname{GCR}$-algebras.
@article{SM_1995_186_9_a0,
author = {O. Yu. Aristov},
title = {The global dimension theorem for non-unital and certain other separable $C^*$-algebras},
journal = {Sbornik. Mathematics},
pages = {1223--1239},
publisher = {mathdoc},
volume = {186},
number = {9},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_9_a0/}
}
O. Yu. Aristov. The global dimension theorem for non-unital and certain other separable $C^*$-algebras. Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1223-1239. http://geodesic.mathdoc.fr/item/SM_1995_186_9_a0/