The global dimension theorem for non-unital and certain other separable $C^*$-algebras
Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1223-1239 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we prove that the global homological dimension of a separable $C^*$-algebra containing a bi-ideal of finite codimension that cannot be complemented as a subalgebra is at least 2. As a consequence we also obtain this bound for the global dimension of separable $C^*$-algebras without an identity and for finite-dimensional separable $\operatorname{GCR}$-algebras.
@article{SM_1995_186_9_a0,
     author = {O. Yu. Aristov},
     title = {The global dimension theorem for non-unital and certain other separable $C^*$-algebras},
     journal = {Sbornik. Mathematics},
     pages = {1223--1239},
     year = {1995},
     volume = {186},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_9_a0/}
}
TY  - JOUR
AU  - O. Yu. Aristov
TI  - The global dimension theorem for non-unital and certain other separable $C^*$-algebras
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1223
EP  - 1239
VL  - 186
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_9_a0/
LA  - en
ID  - SM_1995_186_9_a0
ER  - 
%0 Journal Article
%A O. Yu. Aristov
%T The global dimension theorem for non-unital and certain other separable $C^*$-algebras
%J Sbornik. Mathematics
%D 1995
%P 1223-1239
%V 186
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1995_186_9_a0/
%G en
%F SM_1995_186_9_a0
O. Yu. Aristov. The global dimension theorem for non-unital and certain other separable $C^*$-algebras. Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1223-1239. http://geodesic.mathdoc.fr/item/SM_1995_186_9_a0/

[1] Khelemskii A. Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986 | MR

[2] Khelemskii A. Ya., Banakhovy i polinormirovannye algebry. Obschaya teoriya, predstavleniya, gomologii., Nauka, M., 1989 | MR

[3] Selivanov Yu. V., “O znacheniyakh, prinimaemykh globalnoi razmernostyu v nekotorykh klassakh banakhovykh algebr”, Vest. MGU. Ser. matem., mekh., 1975, no. 1, 37–42 | MR | Zbl

[4] Helemskii A. Ya., “31 problems of the homology of the algebras of analysis”, Linear and complex analysis problem, Lect. Notes in Math., 1573, eds. Havin V. P., Nikolskii N. K., Springer, Berlin, 1994, 54–78

[5] Khelemskii A. Ya., “Ob odnom metode vychisleniya i otsenki globalnoi gomologicheskoi razmernosti banakhovykh algebr”, Matem. sb., 87 (129) (1972), 122–135 | MR

[6] Sheinberg M. V., “Ob otnositelnoi gomologicheskoi razmernosti gruppovykh algebr lokalno kompaktnykh grupp”, Izv. AN SSSR. Ser. matem., 37 (1973), 308–318 | MR

[7] Lykova Z. A., “The lower estimate of the global homological dimension of infinite-dimensional $\operatorname {CCR}$-algebras”, Proc. of OATE 2 Conference (Craiova, Romania) | Zbl

[8] Selivanov Yu. V., “Biproektivnye banakhovy algebry, ikh stroenie, kogomologii i svyaz s yadernymi operatorami”, Funkts. anal. i pril., 10:1 (1976), 89–90 | MR | Zbl

[9] Selivanov Y. U., “Computing and estimating the global dimension in certain classes of Banach algebras”, Math. Scand., 72 (1993), 85–98 | MR | Zbl

[10] Maklein S., Gomologiya, Mir, M., 1966

[11] Lykova Z. A., “The homology of $C^*$-algebras”, Linear and complex analysis problem, Lect. Notes in Math., 1573, eds. Havin V. P., Nikolskii N. K., Springer, Berlin, 1994, 79–82

[12] Godeman R., Algebraicheskaya topologiya i teoriya puchkov, IL, M., 1963

[13] Busby R. C., “Double centraligers and extensions of $C^*$-algebras”, Trans. Amer. Math. Soc., 132:1 (1968), 79–99 | DOI | MR | Zbl

[14] Lykova Z. A., “O gomologicheskikh kharakteristikakh operatornykh algebr”, Vest. MGU. Ser. matem., mekh., 1986, no. 1, 8–13 | MR | Zbl

[15] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR

[16] Bratelli U., Robinson D., Operatornye algebry i statisticheskaya kvantovaya mekhanika, Mir, M., 1982

[17] Semadeni Z., Banach spaces of continious functions, PWN, Warzawa, 1971 | Zbl

[18] Grinlif F., Invariantnye srednie na topologicheskikh gruppakh, Mir, M., 1973

[19] Havin V. P., Nikolskii N. K. (eds.), Linear and complex analysis problem, book 3 (part 1), Lect. Notes in Math., no. 1573, Springer, Berlin, 1994 | MR