The global dimension theorem for non-unital and certain other separable $C^*$-algebras
Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1223-1239

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we prove that the global homological dimension of a separable $C^*$-algebra containing a bi-ideal of finite codimension that cannot be complemented as a subalgebra is at least 2. As a consequence we also obtain this bound for the global dimension of separable $C^*$-algebras without an identity and for finite-dimensional separable $\operatorname{GCR}$-algebras.
@article{SM_1995_186_9_a0,
     author = {O. Yu. Aristov},
     title = {The global dimension theorem for non-unital and certain other separable $C^*$-algebras},
     journal = {Sbornik. Mathematics},
     pages = {1223--1239},
     publisher = {mathdoc},
     volume = {186},
     number = {9},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_9_a0/}
}
TY  - JOUR
AU  - O. Yu. Aristov
TI  - The global dimension theorem for non-unital and certain other separable $C^*$-algebras
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1223
EP  - 1239
VL  - 186
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_9_a0/
LA  - en
ID  - SM_1995_186_9_a0
ER  - 
%0 Journal Article
%A O. Yu. Aristov
%T The global dimension theorem for non-unital and certain other separable $C^*$-algebras
%J Sbornik. Mathematics
%D 1995
%P 1223-1239
%V 186
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_9_a0/
%G en
%F SM_1995_186_9_a0
O. Yu. Aristov. The global dimension theorem for non-unital and certain other separable $C^*$-algebras. Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1223-1239. http://geodesic.mathdoc.fr/item/SM_1995_186_9_a0/