The Dirac operator with elliptic potential
Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1213-1221

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirac operator with elliptic finite-gap potential $$ -\mathrm i\begin{pmatrix}10\\0-1\end{pmatrix}\Psi _x +\begin{pmatrix}0\\q0\end{pmatrix}\Psi =\lambda\Psi . $$ is considered. An Ansatz for the Krichever curves associated with elliptic (in $x$) finite-gap solutions of the 'decomposed' non-linear Schrödinger equation $$ \begin{cases} \mathrm ip_t+p_{xx}-2p^2q=0, \\iq_t-q_{xx}+2pq^2=0 \end{cases} $$ and of the modified $KdV$ ($mKdV$) equation $$ \begin{cases} p_t+p_{xxx}-6pqp_x=0, \\q_t+q_{xxx}-6pqq_x=0. \end{cases} $$ is presented. Examples of two- and three-sheeted coverings associated with the one- and twogap Dirac potential are discussed.
@article{SM_1995_186_8_a6,
     author = {A. O. Smirnov},
     title = {The {Dirac} operator with elliptic potential},
     journal = {Sbornik. Mathematics},
     pages = {1213--1221},
     publisher = {mathdoc},
     volume = {186},
     number = {8},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_8_a6/}
}
TY  - JOUR
AU  - A. O. Smirnov
TI  - The Dirac operator with elliptic potential
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1213
EP  - 1221
VL  - 186
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_8_a6/
LA  - en
ID  - SM_1995_186_8_a6
ER  - 
%0 Journal Article
%A A. O. Smirnov
%T The Dirac operator with elliptic potential
%J Sbornik. Mathematics
%D 1995
%P 1213-1221
%V 186
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_8_a6/
%G en
%F SM_1995_186_8_a6
A. O. Smirnov. The Dirac operator with elliptic potential. Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1213-1221. http://geodesic.mathdoc.fr/item/SM_1995_186_8_a6/