The Dirac operator with elliptic potential
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1213-1221
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Dirac operator with elliptic finite-gap potential  
$$
-\mathrm i\begin{pmatrix}10\\0-1\end{pmatrix}\Psi _x
+\begin{pmatrix}0\\q0\end{pmatrix}\Psi =\lambda\Psi .
$$
is considered.  An Ansatz for the Krichever curves associated with elliptic (in $x$) finite-gap solutions of  the 'decomposed' non-linear Schrödinger equation  
$$
\begin{cases}
\mathrm ip_t+p_{xx}-2p^2q=0, \\iq_t-q_{xx}+2pq^2=0
\end{cases} 
$$
and of the modified $KdV$ ($mKdV$) equation  
$$
\begin{cases}
p_t+p_{xxx}-6pqp_x=0, \\q_t+q_{xxx}-6pqq_x=0.
\end{cases} 
$$
is presented.  Examples of two- and three-sheeted coverings associated with the one- and twogap Dirac potential are discussed.
			
            
            
            
          
        
      @article{SM_1995_186_8_a6,
     author = {A. O. Smirnov},
     title = {The {Dirac} operator with elliptic potential},
     journal = {Sbornik. Mathematics},
     pages = {1213--1221},
     publisher = {mathdoc},
     volume = {186},
     number = {8},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_8_a6/}
}
                      
                      
                    A. O. Smirnov. The Dirac operator with elliptic potential. Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1213-1221. http://geodesic.mathdoc.fr/item/SM_1995_186_8_a6/
