The SQ-universality of hyperbolic groups
Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1199-1211
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main result is that any hyperbolic group that is almost cyclic is SQ-universal.
@article{SM_1995_186_8_a5,
     author = {A. Yu. Ol'shanskii},
     title = {The {SQ-universality} of hyperbolic groups},
     journal = {Sbornik. Mathematics},
     pages = {1199--1211},
     year = {1995},
     volume = {186},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_8_a5/}
}
TY  - JOUR
AU  - A. Yu. Ol'shanskii
TI  - The SQ-universality of hyperbolic groups
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1199
EP  - 1211
VL  - 186
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_8_a5/
LA  - en
ID  - SM_1995_186_8_a5
ER  - 
%0 Journal Article
%A A. Yu. Ol'shanskii
%T The SQ-universality of hyperbolic groups
%J Sbornik. Mathematics
%D 1995
%P 1199-1211
%V 186
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1995_186_8_a5/
%G en
%F SM_1995_186_8_a5
A. Yu. Ol'shanskii. The SQ-universality of hyperbolic groups. Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1199-1211. http://geodesic.mathdoc.fr/item/SM_1995_186_8_a5/

[1] Higman G., Neumann B. H., Neumann H., “Embedding theorems for groups”, J. London Math. Soc., 24:1 (1949), 247–254 | DOI | MR

[2] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[3] Levin F., “Factor groups of the modular group”, J. London Math. Soc., 43:1 (1968), 195–203 | DOI | MR | Zbl

[4] McCool J., “Embedding theorems for countanble groups”, Canad. J. Math., 22 (1970), 827–835 | MR | Zbl

[5] Neumann P. M., “The $\operatorname {SQ}$-universality of some finitely presented groups”, J. Austral. Math. Soc., 16:1 (1973), 1–6 | DOI | MR | Zbl

[6] Lossov K. I., “$\operatorname {SQ}$-universalnost svobodnykh proizvedenii s ob'edinennymi konechnymi podgruppami”, SMZh, 27:6 (1986), 128–139 | MR | Zbl

[7] Gromov M., “Hyperbolic groups”, Essays in group theory, 8, Springer-Verlag, 1987, 75–263 | MR

[8] Giperbolicheskie gruppy po Mikhailu Gromovu, eds. Gis E., de lya Arp P., Mir, M., 1993 | MR

[9] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR

[10] Ol'shanskii A. Yu., “On residualing homomorphisms and $G$-subgroups of hyperbolic groups”, Int. J. Algebra and Comput., 3:4 (1993), 365–409 | DOI | MR

[11] Delzant T., Sous-groupes distigues et quotients des groupes hyperboliques, Universite Louis Pasteur, Strasbourg, 1991