The SQ-universality of hyperbolic groups
Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1199-1211

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result is that any hyperbolic group that is almost cyclic is SQ-universal.
@article{SM_1995_186_8_a5,
     author = {A. Yu. Ol'shanskii},
     title = {The {SQ-universality} of hyperbolic groups},
     journal = {Sbornik. Mathematics},
     pages = {1199--1211},
     publisher = {mathdoc},
     volume = {186},
     number = {8},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_8_a5/}
}
TY  - JOUR
AU  - A. Yu. Ol'shanskii
TI  - The SQ-universality of hyperbolic groups
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1199
EP  - 1211
VL  - 186
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_8_a5/
LA  - en
ID  - SM_1995_186_8_a5
ER  - 
%0 Journal Article
%A A. Yu. Ol'shanskii
%T The SQ-universality of hyperbolic groups
%J Sbornik. Mathematics
%D 1995
%P 1199-1211
%V 186
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_8_a5/
%G en
%F SM_1995_186_8_a5
A. Yu. Ol'shanskii. The SQ-universality of hyperbolic groups. Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1199-1211. http://geodesic.mathdoc.fr/item/SM_1995_186_8_a5/