Scheme-theoretic intersections of three hypersurfaces in $\mathbb P^n$ and the~associated sheaves
Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1185-1198
Voir la notice de l'article provenant de la source Math-Net.Ru
We study codimension $2$ schemes in $\mathbb P^n$ that are scheme-theoretic intersections of three hypersurfaces. The results of Peskine,Szpiro and Rao about invariant smooth three-generated schemes are generalized to Cohen–Macaulay schemes. We also give criteria for stability and splittability of the associated vector bundles.
@article{SM_1995_186_8_a4,
author = {D. Yu. Kuznetsov},
title = {Scheme-theoretic intersections of three hypersurfaces in $\mathbb P^n$ and the~associated sheaves},
journal = {Sbornik. Mathematics},
pages = {1185--1198},
publisher = {mathdoc},
volume = {186},
number = {8},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_8_a4/}
}
TY - JOUR AU - D. Yu. Kuznetsov TI - Scheme-theoretic intersections of three hypersurfaces in $\mathbb P^n$ and the~associated sheaves JO - Sbornik. Mathematics PY - 1995 SP - 1185 EP - 1198 VL - 186 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_186_8_a4/ LA - en ID - SM_1995_186_8_a4 ER -
D. Yu. Kuznetsov. Scheme-theoretic intersections of three hypersurfaces in $\mathbb P^n$ and the~associated sheaves. Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1185-1198. http://geodesic.mathdoc.fr/item/SM_1995_186_8_a4/