Scheme-theoretic intersections of three hypersurfaces in $\mathbb P^n$ and the associated sheaves
Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1185-1198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study codimension $2$ schemes in $\mathbb P^n$ that are scheme-theoretic intersections of three hypersurfaces. The results of Peskine,Szpiro and Rao about invariant smooth three-generated schemes are generalized to Cohen–Macaulay schemes. We also give criteria for stability and splittability of the associated vector bundles.
@article{SM_1995_186_8_a4,
     author = {D. Yu. Kuznetsov},
     title = {Scheme-theoretic intersections of three hypersurfaces in $\mathbb P^n$ and the~associated sheaves},
     journal = {Sbornik. Mathematics},
     pages = {1185--1198},
     year = {1995},
     volume = {186},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_8_a4/}
}
TY  - JOUR
AU  - D. Yu. Kuznetsov
TI  - Scheme-theoretic intersections of three hypersurfaces in $\mathbb P^n$ and the associated sheaves
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1185
EP  - 1198
VL  - 186
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_8_a4/
LA  - en
ID  - SM_1995_186_8_a4
ER  - 
%0 Journal Article
%A D. Yu. Kuznetsov
%T Scheme-theoretic intersections of three hypersurfaces in $\mathbb P^n$ and the associated sheaves
%J Sbornik. Mathematics
%D 1995
%P 1185-1198
%V 186
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1995_186_8_a4/
%G en
%F SM_1995_186_8_a4
D. Yu. Kuznetsov. Scheme-theoretic intersections of three hypersurfaces in $\mathbb P^n$ and the associated sheaves. Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1185-1198. http://geodesic.mathdoc.fr/item/SM_1995_186_8_a4/

[1] Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR

[2] Ballico E., Chiantini L., “On smooth subcanonical varieties of codimension $2$ in $P^n$, $n\geqslant 4$”, Annali di Math., 135 (1983), 99–117 | DOI | MR | Zbl

[3] Chiantini L., Valabrega P., “Subcanonical curves and complete intersections in projective $3$-space”, Ann. Mat. Pura Appl., CXXXVIII (1984), 309–330 | DOI | MR

[4] Huneke C., “Strongly Cohen–Macaulay schemes and residual intersections”, Trans. Amer. Math. Sci., 277 (1983), 739–763 | DOI | MR | Zbl

[5] Horrocks G., Mumford D., “A rank $2$ vector bundle on $P^4$ with $15000$ symmetries”, Topology, 12 (1973), 63–81 | DOI | MR | Zbl

[6] Peskine C., Szpiro L., “Liaison des varietes algebriques”, Inventiones Math., 26 (1973), 271–302 | DOI | MR

[7] Rao A., “Liaison among curves in $\mathbb P^3$”, Inventiones Math., 50 (1979), 205–217 | DOI | MR | Zbl

[8] Rao A., A note on cohomology modules of rank two bundles, Preprint

[9] Okonek C., Spindler H., Schneider M., Vector bundles on complex projective spaces, Progress in Math., 3, Birkhäuser, 1980 | MR | Zbl