The nilpotency class of the sandwich subalgebra of simple finite-dimensional Lie algebras
Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1173-1184 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper it is shown that the nilpotency class of sandwich subalgebras in Lie algebras of Cartan type and in Melikyan algebras over a field of characteristic $p\geqslant 5$ is equal to $2m-1$, where $m$ is the sum of the heights of the variables. The only exception is the Zassenhaus algebra (and also the Hamiltonian and contact algebras for $p=5$).
@article{SM_1995_186_8_a3,
     author = {S. A. Kirillov},
     title = {The nilpotency class of the~sandwich subalgebra of simple finite-dimensional {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {1173--1184},
     year = {1995},
     volume = {186},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_8_a3/}
}
TY  - JOUR
AU  - S. A. Kirillov
TI  - The nilpotency class of the sandwich subalgebra of simple finite-dimensional Lie algebras
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1173
EP  - 1184
VL  - 186
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_8_a3/
LA  - en
ID  - SM_1995_186_8_a3
ER  - 
%0 Journal Article
%A S. A. Kirillov
%T The nilpotency class of the sandwich subalgebra of simple finite-dimensional Lie algebras
%J Sbornik. Mathematics
%D 1995
%P 1173-1184
%V 186
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1995_186_8_a3/
%G en
%F SM_1995_186_8_a3
S. A. Kirillov. The nilpotency class of the sandwich subalgebra of simple finite-dimensional Lie algebras. Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1173-1184. http://geodesic.mathdoc.fr/item/SM_1995_186_8_a3/

[1] Kostrikin A. I., Vokrug Bernsaida, Nauka, M., 1986 | MR

[2] Kostrikin A. I., Shafarevich I. R., “Graduirovannye algebry Li konechnoi kharakteristiki”, Izv. AN SSSR. Seriya matem., 33:2 (1969), 251–322 | MR | Zbl

[3] Melikyan G. M., “O prostykh algebrakh Li kharakteristiki $5$”, UMN, 35:1 (1980), 203–204 | MR | Zbl

[4] Strade H., Wilson R. L., “Classification of simple Lie algebras over an algebraically closed fields of prime characteristic”, Bull. Amer. Math. Soc., 24:2 (1991), 357–362 | DOI | MR | Zbl

[5] Kats V. G., “Opisanie filtrovannykh algebr Li, s kotorymi assotsiirovany graduirovannye algebry Li kartanovskogo tipa”, Izv. AN SSSR. Seriya matem., 38:4 (1974), 800–834 | MR | Zbl

[6] Kuznetsov M. I., “On Lie algebras of contact type”, Comm. Algebra, 18:9 (1990), 2943–3013 | DOI | MR | Zbl

[7] Kuznetsov M. I., “Melikyan algebras as Lie algebras of the type $G_2$”, Comm. Algebra, 19:4 (1991), 1281–1312 | DOI | MR | Zbl

[8] Kirillov S. A., “Sendvichevy podalgebry v prostykh konechnomernykh algebrakh Li”, UMN, 47:4 (1992), 181–182 | MR | Zbl

[9] Kirillov S. A., Spetsialnaya algebra Li kartanovskogo tipa, Preprint No 247 IPF AN SSSR, IPF, Gorkii, 1989

[10] Kirillov S. A., “Sendvicheva podalgebra v algebrakh Li kartanovskogo tipa”, Izv. vuzov. Matematika, 1992, no. 4, 18–25 | MR | Zbl

[11] Kirillov S. A., Gamiltonova algebra Li kartanovskogo tipa, Preprint No 257 IPF AN SSSR, IPF, Gorkii, 1990

[12] Kirillov S. A., Sendvicheva podalgebra v algebrakh Melikyana, Preprint No 285 IPF AN SSSR, IPF, Gorkii, 1990