Solubility and properties of solutions of functional-differential equations in Hilbert space
Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1147-1172
Voir la notice de l'article provenant de la source Math-Net.Ru
A class of functional-differential equations of neutral type with coefficients that are functions taking values in the set of (in general, unbounded) operators in separable Hilbert space is considered. For such equations results on the well-posed solubility of initial-boundary-value problems on the semiaxis in Sobolev weighted spaces are established.
@article{SM_1995_186_8_a2,
author = {V. V. Vlasov},
title = {Solubility and properties of solutions of functional-differential equations in {Hilbert} space},
journal = {Sbornik. Mathematics},
pages = {1147--1172},
publisher = {mathdoc},
volume = {186},
number = {8},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_8_a2/}
}
TY - JOUR AU - V. V. Vlasov TI - Solubility and properties of solutions of functional-differential equations in Hilbert space JO - Sbornik. Mathematics PY - 1995 SP - 1147 EP - 1172 VL - 186 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_186_8_a2/ LA - en ID - SM_1995_186_8_a2 ER -
V. V. Vlasov. Solubility and properties of solutions of functional-differential equations in Hilbert space. Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1147-1172. http://geodesic.mathdoc.fr/item/SM_1995_186_8_a2/