Solubility and properties of solutions of functional-differential equations in Hilbert space
Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1147-1172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of functional-differential equations of neutral type with coefficients that are functions taking values in the set of (in general, unbounded) operators in separable Hilbert space is considered. For such equations results on the well-posed solubility of initial-boundary-value problems on the semiaxis in Sobolev weighted spaces are established.
@article{SM_1995_186_8_a2,
     author = {V. V. Vlasov},
     title = {Solubility and properties of solutions of functional-differential equations in {Hilbert} space},
     journal = {Sbornik. Mathematics},
     pages = {1147--1172},
     year = {1995},
     volume = {186},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_8_a2/}
}
TY  - JOUR
AU  - V. V. Vlasov
TI  - Solubility and properties of solutions of functional-differential equations in Hilbert space
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1147
EP  - 1172
VL  - 186
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_8_a2/
LA  - en
ID  - SM_1995_186_8_a2
ER  - 
%0 Journal Article
%A V. V. Vlasov
%T Solubility and properties of solutions of functional-differential equations in Hilbert space
%J Sbornik. Mathematics
%D 1995
%P 1147-1172
%V 186
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1995_186_8_a2/
%G en
%F SM_1995_186_8_a2
V. V. Vlasov. Solubility and properties of solutions of functional-differential equations in Hilbert space. Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1147-1172. http://geodesic.mathdoc.fr/item/SM_1995_186_8_a2/

[1] Nakagiri S., “Structural properties of functional differential equations in Banach Space”, Osaka J. Math., 25 (1988), 353–398 | MR | Zbl

[2] Datko R., “Representation of solutions and stability of linear differential-difference equations in a Banach Space”, J. Diff. Equations, 29:1 (1978), 105–166 | DOI | MR

[3] Wu J., “Semigroup and integral form of class of partial differential equations with infinite delay”, Diff. and Integral Equations, 4:6 (1991), 1325–1351 | MR | Zbl

[4] Kappel F., Kunisch K., “Invariance results for delay and Volterra equations in fractional order Sobolev Spaces”, Trans. of Amer. Math. Soc., 304:1 (1987), 1–57 | DOI | MR

[5] Kunisch K., Shappacher W., “Necessary conditions for partial differential equations with delay to generate $\ell _0$-semigroup”, J. Diff. Equations, 50 (1983), 49–79 | DOI | MR | Zbl

[6] Lions Zh. L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[7] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[8] Azbelev N. V., Maksimov V. P., Rakhmatulina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[9] Radzievskii G. V., “O bazisnosti proizvodnykh tsepochek”, Izv. AN SSSR. Ser. matem., 39:5 (1975), 1182–1218 | MR | Zbl

[10] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[11] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[12] DiBlasio G., Kunisch K., Sinestrari E., “$L^2$-regularity for parabolic partial integrodifferential equations with delay in the highest order derivatives”, J. Math. Anal. Appl., 102 (1984), 231–263 | DOI | MR

[13] Kunisch K., Mastinšek M., “Dual semigroups and structural operators for partial functional differential equations with unbounded operators acting on the delays”, Diff. and Integral Equations, 3:4 (1990), 733–756 | MR | Zbl

[14] Vlasov V. V., “Ob odnom klasse differentsialno-raznostnykh uravnenii v gilbertovom prostranstve i nekotorykh spektralnykh voprosakh”, DAN, 327:4–6 (1992), 428–432 | Zbl

[15] Vlasov V. V., “Ob odnom klasse lineinykh differentsialnykh uravnenii s posledeistviem v gilbertovom prostranstve”, UMN, 48:6 (1993), 147–148 | MR | Zbl

[16] Vlasov V. V., “O povedenii reshenii nekotorykh funktsionalno-differentsialnykh uravnenii v gilbertovom prostranstve”, Izv. vuzov. Matematika, 1993, no. 1, 3–11 | MR | Zbl

[17] Vlasov V. V., “O nekotorykh svoistvakh reshenii lineinykh differentsialnykh uravnenii s posledeistviem v gilbertovom prostranstve”, Izv. vuzov. Matematika, 1993, no. 5, 24–35 | MR | Zbl

[18] Vlasov V. V., “O svoistvakh reshenii odnogo klassa differentsialno-raznostnykh uravnenii i nekotorykh spektralnykh voprosakh”, UMN, 47:5 (1992), 173–174 | MR | Zbl

[19] Vlasov V. V., Malygina V. V., “O korrektnoi razreshimosti lineinykh differentsialnykh uravnenii s posledeistviem v gilbertovykh prostranstvakh”, Differents. uravneniya, 28:5 (1992), 901–903 | MR | Zbl

[20] Vlasov V. V., “O razreshimosti odnogo klassa funktsionalno-differentsialnykh uravnenii i nekotorykh spektralnykh voprosakh”, DAN SSSR, 319:1 (1991), 22–26 | Zbl

[21] Vlasov V. V., “O povedenii reshenii odnogo klassa funktsionalno-differentsialnykh uravnenii na poluosi i nekotorykh spektralnykh voprosakh”, Izv. vuzov. Matematika, 1992, no. 12, 11–20 | MR | Zbl

[22] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | MR | Zbl

[23] Kolmanovskii V. B., Nosov V. R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981 | MR

[24] Elsgolts E. L., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971 | MR | Zbl

[25] Kurbatov V. G., Lineinye differentsialno-raznostnye uravneniya, Izd-vo VGU, Voronezh, 1990 | MR | Zbl

[26] Gromova P. S., Zverkin A. M., “O trigonometricheskikh ryadakh, summoi kotorykh yavlyaetsya nepreryvnaya neogranichennaya funktsiya na veschestvennoi osi – reshenie uravneniya s otklonyayuschimsya argumentom”, Differents. uravneniya, 4:10 (1968), 1774–1784 | MR | Zbl

[27] Vlasov V. V., “O razreshimosti kraevykh zadach dlya odnogo klassa integrodifferentsialnykh uravnenii na poluosi”, Differents. uravneniya, 25:9 (1989), 1589–1599 | MR

[28] Vlasov V. V., “O nekotorykh svoistvakh reshenii funktsionalno-differentsialnykh uravnenii v gilbertovom prostranstve”, UMN, 49:3 (1994), 175–176 | MR | Zbl

[29] Vlasov V. V., “O kratnoi minimalnosti chasti sistemy kornevykh vektorov nekotorykh operator-funktsii”, DAN SSSR, 310:2 (1990), 276–280 | Zbl

[30] Staffans O., “Some well-posed functional equations which generate semigroups”, J. Diff. Equations, 58:2 (1985), 157–191 | DOI | MR | Zbl

[31] Miller R. K., “Volterra integral equations in a Banach space”, Funkcialaj Ekvacioj, 18 (1975), 163–194 | MR

[32] Prüss J., “On linear Volterra equations of parabolic type in Banach space”, Trans. of Amer. Math. Soc., 301:2 (1987), 691–721 | DOI | MR | Zbl

[33] Aliev R. G., “Ob ustoichivosti reshenii uravnenii s zapazdyvayuschim argumentom v gilbertovom prostranstve”, Differents. uravneniya, 23:4 (1987), 555–568 | MR | Zbl

[34] Kamenskii G. A., Skubachevskii A. L., Lineinye kraevye zadachi dlya differentsialno-raznostnykh uravnenii, Izd-vo MAI, M., 1992 | MR | Zbl