On the geometry and topology of flows and foliations on surfaces and the~Anosov problem
Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1107-1146
Voir la notice de l'article provenant de la source Math-Net.Ru
A study is made of flows with finitely many equilibrium states and of foliations with finitely many singularities of saddle type with integer and half-integer index on closed surfaces, and for a metric of constant curvature the role of geodesics is established in the asymptotic behaviour of semitrajectories of flows and semileaves of foliations upon lifting to the unbranched or branched universal covering.
@article{SM_1995_186_8_a1,
author = {S. Kh. Aranson and V. Z. Grines and E. V. Zhuzhoma},
title = {On the geometry and topology of flows and foliations on surfaces and {the~Anosov} problem},
journal = {Sbornik. Mathematics},
pages = {1107--1146},
publisher = {mathdoc},
volume = {186},
number = {8},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_8_a1/}
}
TY - JOUR AU - S. Kh. Aranson AU - V. Z. Grines AU - E. V. Zhuzhoma TI - On the geometry and topology of flows and foliations on surfaces and the~Anosov problem JO - Sbornik. Mathematics PY - 1995 SP - 1107 EP - 1146 VL - 186 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_186_8_a1/ LA - en ID - SM_1995_186_8_a1 ER -
%0 Journal Article %A S. Kh. Aranson %A V. Z. Grines %A E. V. Zhuzhoma %T On the geometry and topology of flows and foliations on surfaces and the~Anosov problem %J Sbornik. Mathematics %D 1995 %P 1107-1146 %V 186 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1995_186_8_a1/ %G en %F SM_1995_186_8_a1
S. Kh. Aranson; V. Z. Grines; E. V. Zhuzhoma. On the geometry and topology of flows and foliations on surfaces and the~Anosov problem. Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1107-1146. http://geodesic.mathdoc.fr/item/SM_1995_186_8_a1/