On the geometry and topology of flows and foliations on surfaces and the~Anosov problem
Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1107-1146

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of flows with finitely many equilibrium states and of foliations with finitely many singularities of saddle type with integer and half-integer index on closed surfaces, and for a metric of constant curvature the role of geodesics is established in the asymptotic behaviour of semitrajectories of flows and semileaves of foliations upon lifting to the unbranched or branched universal covering.
@article{SM_1995_186_8_a1,
     author = {S. Kh. Aranson and V. Z. Grines and E. V. Zhuzhoma},
     title = {On the geometry and topology of flows and foliations on surfaces and {the~Anosov} problem},
     journal = {Sbornik. Mathematics},
     pages = {1107--1146},
     publisher = {mathdoc},
     volume = {186},
     number = {8},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_8_a1/}
}
TY  - JOUR
AU  - S. Kh. Aranson
AU  - V. Z. Grines
AU  - E. V. Zhuzhoma
TI  - On the geometry and topology of flows and foliations on surfaces and the~Anosov problem
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1107
EP  - 1146
VL  - 186
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_8_a1/
LA  - en
ID  - SM_1995_186_8_a1
ER  - 
%0 Journal Article
%A S. Kh. Aranson
%A V. Z. Grines
%A E. V. Zhuzhoma
%T On the geometry and topology of flows and foliations on surfaces and the~Anosov problem
%J Sbornik. Mathematics
%D 1995
%P 1107-1146
%V 186
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_8_a1/
%G en
%F SM_1995_186_8_a1
S. Kh. Aranson; V. Z. Grines; E. V. Zhuzhoma. On the geometry and topology of flows and foliations on surfaces and the~Anosov problem. Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1107-1146. http://geodesic.mathdoc.fr/item/SM_1995_186_8_a1/