Exact local estimates for the~supports of solutions in problems for non-linear parabolic equations
Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1085-1106

Voir la notice de l'article provenant de la source Math-Net.Ru

The phenomenon of instantaneous shrinking of the support in the Cauchy problem for non-linear parabolic equations with a positive initial function that is infinitesimal as $|x|\to\infty$ is considered. Exact local estimates for the boundary of the support of the solutions are proved. For example, the exact asymptotic formula $$ u_0\bigl(\eta^\pm(t)\bigr)\sim\bigl[(1-\beta)t\bigr]^{1/(1-\beta)}, \qquad t\to 0, $$ holds for the solution of the equation $u_t=(u^nu_x)_x-u^\beta$, $0\beta1$, $n\geqslant 1-\beta$, where $\eta^+(t)=\sup\bigl\{x:u(x,t)>0\bigr\}$ and $\eta^-(t)=\inf\bigl\{x:u(x,t)>0\bigr\}$.
@article{SM_1995_186_8_a0,
     author = {U. G. Abdullaev},
     title = {Exact local estimates for the~supports of solutions in problems for non-linear parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {1085--1106},
     publisher = {mathdoc},
     volume = {186},
     number = {8},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_8_a0/}
}
TY  - JOUR
AU  - U. G. Abdullaev
TI  - Exact local estimates for the~supports of solutions in problems for non-linear parabolic equations
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1085
EP  - 1106
VL  - 186
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_8_a0/
LA  - en
ID  - SM_1995_186_8_a0
ER  - 
%0 Journal Article
%A U. G. Abdullaev
%T Exact local estimates for the~supports of solutions in problems for non-linear parabolic equations
%J Sbornik. Mathematics
%D 1995
%P 1085-1106
%V 186
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_8_a0/
%G en
%F SM_1995_186_8_a0
U. G. Abdullaev. Exact local estimates for the~supports of solutions in problems for non-linear parabolic equations. Sbornik. Mathematics, Tome 186 (1995) no. 8, pp. 1085-1106. http://geodesic.mathdoc.fr/item/SM_1995_186_8_a0/