A criterion for the~almost-everywhere convergence of  Fourier--Walsh square partial sums of integrable functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 1057-1070
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			S. V. Konyagin showed that if the one-dimensional Lebesgue constants $L_{n_k}$ for the Walsh–Paley system are unbounded, then the square partial sums $S_{n_k,n_k}(f)$ of some integrable function $f({x})=f(x_1,x_2)$ diverge almost everywhere. On the other hand the author constructed an example of sequence $\{n_k\}$ for which, sup $\sup L_{n_k}$ is finite, but for some integrable function $f({x})=f(x_1,x_2)$ the partial sums $S_{n_k,n_k}(f)$ diverge almost everywhere. Thus boundedness of the Lebesgue constants $L_{n_k}$ is not a necessary and sufficient condition for the convergence almost everywhere of the partial sums $S_{n_k,n_k}(f)$ of any integrable function. In this article we find such a necessary and sufficient condition.
			
            
            
            
          
        
      @article{SM_1995_186_7_a7,
     author = {S. F. Lukomskii},
     title = {A criterion for the~almost-everywhere convergence of  {Fourier--Walsh} square partial sums of integrable functions},
     journal = {Sbornik. Mathematics},
     pages = {1057--1070},
     publisher = {mathdoc},
     volume = {186},
     number = {7},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_7_a7/}
}
                      
                      
                    TY - JOUR AU - S. F. Lukomskii TI - A criterion for the~almost-everywhere convergence of Fourier--Walsh square partial sums of integrable functions JO - Sbornik. Mathematics PY - 1995 SP - 1057 EP - 1070 VL - 186 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_186_7_a7/ LA - en ID - SM_1995_186_7_a7 ER -
S. F. Lukomskii. A criterion for the~almost-everywhere convergence of Fourier--Walsh square partial sums of integrable functions. Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 1057-1070. http://geodesic.mathdoc.fr/item/SM_1995_186_7_a7/
