A criterion for the almost-everywhere convergence of Fourier–Walsh square partial sums of integrable functions
Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 1057-1070
Cet article a éte moissonné depuis la source Math-Net.Ru
S. V. Konyagin showed that if the one-dimensional Lebesgue constants $L_{n_k}$ for the Walsh–Paley system are unbounded, then the square partial sums $S_{n_k,n_k}(f)$ of some integrable function $f({x})=f(x_1,x_2)$ diverge almost everywhere. On the other hand the author constructed an example of sequence $\{n_k\}$ for which, sup $\sup L_{n_k}$ is finite, but for some integrable function $f({x})=f(x_1,x_2)$ the partial sums $S_{n_k,n_k}(f)$ diverge almost everywhere. Thus boundedness of the Lebesgue constants $L_{n_k}$ is not a necessary and sufficient condition for the convergence almost everywhere of the partial sums $S_{n_k,n_k}(f)$ of any integrable function. In this article we find such a necessary and sufficient condition.
@article{SM_1995_186_7_a7,
author = {S. F. Lukomskii},
title = {A criterion for the~almost-everywhere convergence of {Fourier{\textendash}Walsh} square partial sums of integrable functions},
journal = {Sbornik. Mathematics},
pages = {1057--1070},
year = {1995},
volume = {186},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_7_a7/}
}
TY - JOUR AU - S. F. Lukomskii TI - A criterion for the almost-everywhere convergence of Fourier–Walsh square partial sums of integrable functions JO - Sbornik. Mathematics PY - 1995 SP - 1057 EP - 1070 VL - 186 IS - 7 UR - http://geodesic.mathdoc.fr/item/SM_1995_186_7_a7/ LA - en ID - SM_1995_186_7_a7 ER -
S. F. Lukomskii. A criterion for the almost-everywhere convergence of Fourier–Walsh square partial sums of integrable functions. Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 1057-1070. http://geodesic.mathdoc.fr/item/SM_1995_186_7_a7/
[1] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, Elm, Baku, 1981
[2] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha. Teoriya i prilozheniya, Nauka, M., 1987 | MR | Zbl
[3] Konyagin S. V., “O podposledovatelnosti chastnykh summ Fure–Uolsha”, Matem. zametki, 54:4 (1993), 69–75 | MR | Zbl
[4] Lukomskii S. F., “O raskhodimosti pochti vsyudu kvadratnykh chastichnykh summ Fure–Uolsha integriruemykh funktsii”, Matem. zametki, 56:1 (1994), 57–62 | MR | Zbl