Bordism groups of Poincare $E_\infty$-coalgebras and symmetric $L$-groups
Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 1023-1055

Voir la notice de l'article provenant de la source Math-Net.Ru

A Poincare $E_\infty$-coalgebra construction over involutive algebras is introduced in this paper. Various types of bordism between Poincare $E_\infty$-coalgebras are defined and the relations between the corresponding bordism groups are studied. It is shown in particular that the Thom bordism groups of closed non-oriented smooth manifolds and the rational Wall groups of a unitary group have a common algebraic origin, that is, they are obtained by the same construction considered over the fields $\mathbb Z/2$ and $\mathbb Q$, respectively.
@article{SM_1995_186_7_a6,
     author = {S. V. Lapin},
     title = {Bordism groups of {Poincare} $E_\infty$-coalgebras and symmetric $L$-groups},
     journal = {Sbornik. Mathematics},
     pages = {1023--1055},
     publisher = {mathdoc},
     volume = {186},
     number = {7},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_7_a6/}
}
TY  - JOUR
AU  - S. V. Lapin
TI  - Bordism groups of Poincare $E_\infty$-coalgebras and symmetric $L$-groups
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1023
EP  - 1055
VL  - 186
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_7_a6/
LA  - en
ID  - SM_1995_186_7_a6
ER  - 
%0 Journal Article
%A S. V. Lapin
%T Bordism groups of Poincare $E_\infty$-coalgebras and symmetric $L$-groups
%J Sbornik. Mathematics
%D 1995
%P 1023-1055
%V 186
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_7_a6/
%G en
%F SM_1995_186_7_a6
S. V. Lapin. Bordism groups of Poincare $E_\infty$-coalgebras and symmetric $L$-groups. Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 1023-1055. http://geodesic.mathdoc.fr/item/SM_1995_186_7_a6/