Bordism groups of Poincare $E_\infty$-coalgebras and symmetric $L$-groups
Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 1023-1055 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Poincare $E_\infty$-coalgebra construction over involutive algebras is introduced in this paper. Various types of bordism between Poincare $E_\infty$-coalgebras are defined and the relations between the corresponding bordism groups are studied. It is shown in particular that the Thom bordism groups of closed non-oriented smooth manifolds and the rational Wall groups of a unitary group have a common algebraic origin, that is, they are obtained by the same construction considered over the fields $\mathbb Z/2$ and $\mathbb Q$, respectively.
@article{SM_1995_186_7_a6,
     author = {S. V. Lapin},
     title = {Bordism groups of {Poincare} $E_\infty$-coalgebras and symmetric $L$-groups},
     journal = {Sbornik. Mathematics},
     pages = {1023--1055},
     year = {1995},
     volume = {186},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_7_a6/}
}
TY  - JOUR
AU  - S. V. Lapin
TI  - Bordism groups of Poincare $E_\infty$-coalgebras and symmetric $L$-groups
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1023
EP  - 1055
VL  - 186
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_7_a6/
LA  - en
ID  - SM_1995_186_7_a6
ER  - 
%0 Journal Article
%A S. V. Lapin
%T Bordism groups of Poincare $E_\infty$-coalgebras and symmetric $L$-groups
%J Sbornik. Mathematics
%D 1995
%P 1023-1055
%V 186
%N 7
%U http://geodesic.mathdoc.fr/item/SM_1995_186_7_a6/
%G en
%F SM_1995_186_7_a6
S. V. Lapin. Bordism groups of Poincare $E_\infty$-coalgebras and symmetric $L$-groups. Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 1023-1055. http://geodesic.mathdoc.fr/item/SM_1995_186_7_a6/

[1] Wall C. T. C., “Surgery of non-simply-connected manifolds”, Ann. Math., 84 (1966), 217–276 | DOI | MR | Zbl

[2] Mischenko A. S., “Gomotopicheskie invarianty neodnosvyaznykh mnogoobrazii. I: Ratsionalnye invarianty”, Izv. AN SSSR. Ser. matem., 34:3 (1970), 501–514 | MR | Zbl

[3] Ranicki A. A., “Algebraic $L$-theory. I: Foundations”, Proc. London Math. Soc., 27:1 (1973), 101–125 | DOI | MR | Zbl

[4] Solovev Yu. P., “Signaturno realizuemye podgruppy grupp Uolla”, UMN, 36:3 (1981), 223–224 | MR | Zbl

[5] Smirnov V. A., “Gomologii rassloennykh prostranstv”, UMN, 35:3 (1980), 227–230 | MR | Zbl

[6] Smirnov V. A., “O kotsepnom komplekse topologicheskikh prostranstv”, Matem. sb., 115 (157):1 (5) (1981), 146–158 | MR | Zbl

[7] Mischenko A. S., “Gomotopicheskie invarianty neodnosvyaznykh mnogoobrazii. II: Prostoi gomotopicheskii tip”, Izv. AN SSSR. Ser. matem., 35:3 (1971), 655–666 | MR | Zbl

[8] Mischenko A. S., “Gomotopicheskie invarianty neodnosvyaznykh mnogoobrazii. III: Vysshie signatury”, Izv. AN SSSR. Ser. matem., 35:6 (1971), 1316–1355 | MR | Zbl

[9] Ranicki A. A., “The algebraic theory of surgery. I: Foundations”, Proc. London Math. Soc., 40:1 (1980), 87–192 | DOI | MR | Zbl

[10] Smirnov V. A., “Gomotopicheskaya teoriya koalgebr”, Izv. AN SSSR. Ser. matem., 49:6 (1985), 1302–1321 | MR | Zbl

[11] Smirnov V. A., “Vtorichnye operatsii v gomologiyakh operady $E$”, Izv. RAN. Ser. matem., 56:2 (1992), 449–468

[12] May J. P., Simplicial objects in algebraic topology, Van Nostrand, Princeton, 1967 | MR

[13] Quillen D., Homotopical algebra, Lect. Notes in Math., 43, 1967 | MR | Zbl

[14] Maklein S., Gomologiya, Mir, M., 1966

[15] May J. P., “A general algebraic approach to Steenrod operations”, Lect. Notes in Math., 168, 1970, 153–231 | MR | Zbl

[16] Adams J. F., “On formulae of Thom and Wu”, Proc. London Math. Soc., 11 (1961), 741–752 | DOI | MR | Zbl

[17] Brown E. H., Peterson F. P., “Algebraic bordizm groups”, Ann. Math., 79:3 (1964), 616–662 | DOI | MR