Extension of the~Wong--Rosay theorem to the~unbounded case
Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 967-976
Voir la notice de l'article provenant de la source Math-Net.Ru
The central result in this paper is an extension of the well-known Wong–Rosay theorem stating that a strictly pseudoconvex domain with non-compact automorphism group is biholomorphically equivalent to the unit ball in $\mathbb C^n$. The main distinction is that the requirement of boundedness of the domain is waived.
@article{SM_1995_186_7_a3,
author = {A. M. Efimov},
title = {Extension of {the~Wong--Rosay} theorem to the~unbounded case},
journal = {Sbornik. Mathematics},
pages = {967--976},
publisher = {mathdoc},
volume = {186},
number = {7},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_7_a3/}
}
A. M. Efimov. Extension of the~Wong--Rosay theorem to the~unbounded case. Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 967-976. http://geodesic.mathdoc.fr/item/SM_1995_186_7_a3/