Extension of the~Wong--Rosay theorem to the~unbounded case
Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 967-976

Voir la notice de l'article provenant de la source Math-Net.Ru

The central result in this paper is an extension of the well-known Wong–Rosay theorem stating that a strictly pseudoconvex domain with non-compact automorphism group is biholomorphically equivalent to the unit ball in $\mathbb C^n$. The main distinction is that the requirement of boundedness of the domain is waived.
@article{SM_1995_186_7_a3,
     author = {A. M. Efimov},
     title = {Extension of {the~Wong--Rosay} theorem to the~unbounded case},
     journal = {Sbornik. Mathematics},
     pages = {967--976},
     publisher = {mathdoc},
     volume = {186},
     number = {7},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_7_a3/}
}
TY  - JOUR
AU  - A. M. Efimov
TI  - Extension of the~Wong--Rosay theorem to the~unbounded case
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 967
EP  - 976
VL  - 186
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_7_a3/
LA  - en
ID  - SM_1995_186_7_a3
ER  - 
%0 Journal Article
%A A. M. Efimov
%T Extension of the~Wong--Rosay theorem to the~unbounded case
%J Sbornik. Mathematics
%D 1995
%P 967-976
%V 186
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_7_a3/
%G en
%F SM_1995_186_7_a3
A. M. Efimov. Extension of the~Wong--Rosay theorem to the~unbounded case. Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 967-976. http://geodesic.mathdoc.fr/item/SM_1995_186_7_a3/