Extension of the Wong–Rosay theorem to the unbounded case
Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 967-976 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The central result in this paper is an extension of the well-known Wong–Rosay theorem stating that a strictly pseudoconvex domain with non-compact automorphism group is biholomorphically equivalent to the unit ball in $\mathbb C^n$. The main distinction is that the requirement of boundedness of the domain is waived.
@article{SM_1995_186_7_a3,
     author = {A. M. Efimov},
     title = {Extension of {the~Wong{\textendash}Rosay} theorem to the~unbounded case},
     journal = {Sbornik. Mathematics},
     pages = {967--976},
     year = {1995},
     volume = {186},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_7_a3/}
}
TY  - JOUR
AU  - A. M. Efimov
TI  - Extension of the Wong–Rosay theorem to the unbounded case
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 967
EP  - 976
VL  - 186
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_7_a3/
LA  - en
ID  - SM_1995_186_7_a3
ER  - 
%0 Journal Article
%A A. M. Efimov
%T Extension of the Wong–Rosay theorem to the unbounded case
%J Sbornik. Mathematics
%D 1995
%P 967-976
%V 186
%N 7
%U http://geodesic.mathdoc.fr/item/SM_1995_186_7_a3/
%G en
%F SM_1995_186_7_a3
A. M. Efimov. Extension of the Wong–Rosay theorem to the unbounded case. Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 967-976. http://geodesic.mathdoc.fr/item/SM_1995_186_7_a3/

[1] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | MR | Zbl

[2] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1985 | MR

[3] Bedford E., Pinchuk S. I., “Oblasti v $\mathbb C^2$ s nekompaktnymi gruppami avtomorfizmov”, Matem. sb., 135 (177) (1988), 147–157 | Zbl

[4] Pinchuk S. I., “Sobstvennye golomorfnye otobrazheniya strogo psevdovypuklykh oblastei”, DAN SSSR, 241 (1978), 30–33 | MR | Zbl

[5] Pinchuk S. I., “Golomorfnaya neekvivalentnost nekotorykh klassov oblastei v $\mathbb C^n$”, Matem. sb., 111 (153) (1980), 61–86 | MR

[6] Khenkin G. M., “Analiticheskii polidisk golomorfno neekvivalenten strogo psevdovypukloi oblasti”, DAN SSSR, 210 (1973), 1026–1029 | MR | Zbl

[7] Forstneric F., Rosay J. P., “Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings”, Math. Ann., 279 (1987), 239–252 | DOI | MR | Zbl

[8] Graham I., “Boundary behavior of the Caratheodory and Kobayashi metrics on strictly pseudo-convex domain in $\mathbb C^n$”, Trans. Amer. Math. Soc., 207 (1975), 219–240 | DOI | MR | Zbl

[9] Narasimhan R., Several complex varyables, Chicago Lectures in Mathematics, University of Chicago Press, 1971 | MR

[10] Pinchuk S., “The Scaling Method and Holomorphic Mappings”, Trans. Amer. Math. Soc., 52 (1991), 151–161 | MR | Zbl

[11] Rosay J. P., “Sur une caracterisation de la boule parmi les domaines de $\mathbb C^n$ par son groupe d'automorphismes”, Ann. Inst. Fourier (Grenoble), 29 (1979), 91–97 | MR | Zbl

[12] Royden H. L., “Remarks on the Kobayashi metric”, Lecture Notes in Math., 185, Springer-Verlag, Berlin, 1977, 125–137 | MR

[13] Sibony N., A class of hyperbolic manifolds, Princeton University Press, 1981 | MR | Zbl

[14] Wong B., “Characterization of the unit ball in $\mathbb C^n$ by its automorphism group”, Invent. Math., 41 (1977), 253–257 | DOI | MR | Zbl