Theory of singular perturbations with a~non-smooth spectrum of the~limit operator
Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 951-966

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to the development of the regularization method [1] for the case where the spectrum of the limit variable operator has non-smooth singularities. The case will be investigated where one of the eigenvalues of the limit operator $A(t)$ vanishes identically on certain sections of the segment [0, T], and the approach to these sections has a polynomial singularity. Such problems arise in the radio and impulse technologies.
@article{SM_1995_186_7_a2,
     author = {A. G. Eliseev},
     title = {Theory of singular perturbations with a~non-smooth spectrum of the~limit operator},
     journal = {Sbornik. Mathematics},
     pages = {951--966},
     publisher = {mathdoc},
     volume = {186},
     number = {7},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_7_a2/}
}
TY  - JOUR
AU  - A. G. Eliseev
TI  - Theory of singular perturbations with a~non-smooth spectrum of the~limit operator
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 951
EP  - 966
VL  - 186
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_7_a2/
LA  - en
ID  - SM_1995_186_7_a2
ER  - 
%0 Journal Article
%A A. G. Eliseev
%T Theory of singular perturbations with a~non-smooth spectrum of the~limit operator
%J Sbornik. Mathematics
%D 1995
%P 951-966
%V 186
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_7_a2/
%G en
%F SM_1995_186_7_a2
A. G. Eliseev. Theory of singular perturbations with a~non-smooth spectrum of the~limit operator. Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 951-966. http://geodesic.mathdoc.fr/item/SM_1995_186_7_a2/