Compact homogeneous manifolds with integrable invariant distributions, and scalar curvature
Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 941-950 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that for a compact simply-connected effective homogeneous space $G/H$ of a connected compact Lie group $G$ by a closed subgroup $H$ the following conditions are equivalent: (1) Every $G$-invariant distribution on $G/H$ is integrable. (2) The space $G/H$ is of normal type in the sense of Bergery. (3) Every $G$-invariant Riemannian metric on $G/H$ has positive scalar curvature. (4) The space $G/H$ is isomorphic to a direct product of compact simplyconnected strongly isotropy-irreducible homogeneous spaces.
@article{SM_1995_186_7_a1,
     author = {V. N. Berestovskii},
     title = {Compact homogeneous manifolds with integrable invariant distributions, and scalar curvature},
     journal = {Sbornik. Mathematics},
     pages = {941--950},
     year = {1995},
     volume = {186},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_7_a1/}
}
TY  - JOUR
AU  - V. N. Berestovskii
TI  - Compact homogeneous manifolds with integrable invariant distributions, and scalar curvature
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 941
EP  - 950
VL  - 186
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_7_a1/
LA  - en
ID  - SM_1995_186_7_a1
ER  - 
%0 Journal Article
%A V. N. Berestovskii
%T Compact homogeneous manifolds with integrable invariant distributions, and scalar curvature
%J Sbornik. Mathematics
%D 1995
%P 941-950
%V 186
%N 7
%U http://geodesic.mathdoc.fr/item/SM_1995_186_7_a1/
%G en
%F SM_1995_186_7_a1
V. N. Berestovskii. Compact homogeneous manifolds with integrable invariant distributions, and scalar curvature. Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 941-950. http://geodesic.mathdoc.fr/item/SM_1995_186_7_a1/

[1] Stolz S., “Simply connected manifolds of positive scalar curvature”, Bull. (N.S.) of the AMS, 23:2 (1990), 427–432 | DOI | MR | Zbl

[2] Lohkamp J., “Negatively Ricci curved manifolds”, Bull. (N.S.) of the AMS, 27:2 (1992), 288–291 | DOI | MR | Zbl

[3] Berestovskii V. N., “Odnorodnye prostranstva s vnutrennei metrikoi”, DAN SSSR, 301:2 (1988), 268–271 | Zbl

[4] Berestovskii V. N., “Odnorodnye mnogoobraziya s vnutrennei metrikoi, II”, Sib. matem. zhurn., 30:2 (1989), 14–28 | MR | Zbl

[5] Kartan E., Geometriya grupp Li i simmetricheskie prostranstva, IL, M., 1949

[6] Manturov O. V., “Odnorodnye rimanovy prostranstva s neprivodimoi gruppoi vraschenii”, Tr. semin. po vektorn. tenzorn. analizu, no. 13, 1966, 68–143 | MR

[7] Wolf J. A., “The geometry and structure of isotropy irreducible homogeneous spaces”, Acta Math., 120 (1968), 59–148 ; Correction, Acta Math., 152 (1984), 141–142 | DOI | MR | Zbl | DOI | MR | Zbl

[8] Bergery L.-B., “Sur la courbure des metriques riemanniens invariantes des groupes de Lie et des espaces homogenes”, Ann. Sci. Ecole norm. super. Ser. 4, 11:4 (1978), 543–576 | MR | Zbl

[9] Berestovskii V. N., “Kompaktnye odnorodnye mnogoobraziya s integriruemymi invariantnymi raspredeleniyami”, Izv. vuzov. Matematika, 1992, no. 6, 42–48 | MR | Zbl

[10] Kramer M., “Eine Klassifikation bestimmter Untergruppen zusammenhangender Liegruppen”, Comm. Algebra, 3 (1975), 691–737 | DOI | MR

[11] Wang Mc. K., Ziller W., “On isotropy irreducible Riemannian manifolds”, Acta Math., 166 (1991), 223–261 | DOI | MR | Zbl

[12] Wang Mc. K., Ziller W., “Symmetric spaces and strongly isotropy irreducible spaces”, Math. Ann., 296 (1993), 285–326 | DOI | MR | Zbl

[13] Besse A., Mnogoobraziya Einshteina, Mir, M., 1990 | MR | Zbl

[14] Uorner F., Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987 | MR