Compact homogeneous manifolds with integrable invariant distributions, and scalar curvature
Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 941-950
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for a compact simply-connected effective homogeneous space $G/H$ of a connected compact Lie group $G$ by a closed subgroup $H$ the following conditions are equivalent:
(1) Every $G$-invariant distribution on $G/H$ is integrable.
(2) The space $G/H$ is of normal type in the sense of Bergery.
(3) Every $G$-invariant Riemannian metric on $G/H$ has positive scalar curvature.
(4) The space $G/H$ is isomorphic to a direct product of compact simplyconnected strongly isotropy-irreducible homogeneous spaces.
@article{SM_1995_186_7_a1,
author = {V. N. Berestovskii},
title = {Compact homogeneous manifolds with integrable invariant distributions, and scalar curvature},
journal = {Sbornik. Mathematics},
pages = {941--950},
publisher = {mathdoc},
volume = {186},
number = {7},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_7_a1/}
}
TY - JOUR AU - V. N. Berestovskii TI - Compact homogeneous manifolds with integrable invariant distributions, and scalar curvature JO - Sbornik. Mathematics PY - 1995 SP - 941 EP - 950 VL - 186 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_186_7_a1/ LA - en ID - SM_1995_186_7_a1 ER -
V. N. Berestovskii. Compact homogeneous manifolds with integrable invariant distributions, and scalar curvature. Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 941-950. http://geodesic.mathdoc.fr/item/SM_1995_186_7_a1/