On an algebra of pseudodifferential operators
Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 929-940 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we introduce an algebra of pseudodifferential operators with symbols of finite smoothness, acting invariantly and continuously in an Orlicz space of functions of exponential type. The concept of point spectral radius $$ \lim_{m\to\infty}\|A^m(D)f\|_{\Phi }^{1/m} $$ is introduced and its existence is proved. Here $f$ is an arbitrary function in this space, $A(D)$ is an arbitrary element of the algebra, and $\|\cdot\|_{\Phi }$ is the Luxemburg norm. This point spectral radius is evaluated as the supremum of the modulus of $A(D)$ on the support of the Fourier transform of $f$. We evaluate the spectral radius of a pseudodifferential operator. As applications, certain non-convex and convex cases of the well-known Paley–Wiener theorem are obtained. We also consider the solvability of pseudodifferential equations.
@article{SM_1995_186_7_a0,
     author = {Ha Huy Bang},
     title = {On an algebra of pseudodifferential operators},
     journal = {Sbornik. Mathematics},
     pages = {929--940},
     year = {1995},
     volume = {186},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_7_a0/}
}
TY  - JOUR
AU  - Ha Huy Bang
TI  - On an algebra of pseudodifferential operators
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 929
EP  - 940
VL  - 186
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_7_a0/
LA  - en
ID  - SM_1995_186_7_a0
ER  - 
%0 Journal Article
%A Ha Huy Bang
%T On an algebra of pseudodifferential operators
%J Sbornik. Mathematics
%D 1995
%P 929-940
%V 186
%N 7
%U http://geodesic.mathdoc.fr/item/SM_1995_186_7_a0/
%G en
%F SM_1995_186_7_a0
Ha Huy Bang. On an algebra of pseudodifferential operators. Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 929-940. http://geodesic.mathdoc.fr/item/SM_1995_186_7_a0/

[1] Burbaki N., Spektralnaya teoriya, Mir, M., 1972 | MR | Zbl

[2] Adams R. A., Sobolev spaces, Academic Press, New York–San Francisco–London, 1975 | MR | Zbl

[3] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958 | MR

[4] Luxemburg W., Banach function spaces, Thesis, Technische Hogeschool te Delft, The Netherlands, 1955 | MR

[5] O'Neil R., “Fractional integration in Orlicz space, I”, Trans. Amer. Math. Soc., 115 (1965), 300–328 | DOI | MR | Zbl

[6] Chan Dyk Van, Nelineinye differentsialnye uravneniya i funktsionalnye prostranstva beskonechnogo poryadka, Izd-vo BGU, Minsk, 1983 | Zbl

[7] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[8] Dubinskii Yu. A., “Algebra psevdodifferentsialnykh operatorov s analiticheskimi simvolami i ee prilozheniya k matematicheskoi fizike”, UMN, 37:5 (224) (1982), 97–137 | MR | Zbl

[9] Hörmander L., The analysis of linear partial differential operators, V. I, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983

[10] Egorov Yu. V., Lektsii po uravneniyam s chastnymi proizvodnymi, Izd-vo MGU, M., 1985 | MR | Zbl

[11] Triebel H., Fourier analysis and function spaces, Teubner-Texte Math., 7, Teubner, Leipzig, 1977 | MR

[12] Bang H. H., “A property of infinitely differentiable functions”, Proc. Amer. Math. Soc., 108:1 (1990), 73–76 | DOI | MR | Zbl