On an algebra of pseudodifferential operators
Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 929-940

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce an algebra of pseudodifferential operators with symbols of finite smoothness, acting invariantly and continuously in an Orlicz space of functions of exponential type. The concept of point spectral radius $$ \lim_{m\to\infty}\|A^m(D)f\|_{\Phi }^{1/m} $$ is introduced and its existence is proved. Here $f$ is an arbitrary function in this space, $A(D)$ is an arbitrary element of the algebra, and $\|\cdot\|_{\Phi }$ is the Luxemburg norm. This point spectral radius is evaluated as the supremum of the modulus of $A(D)$ on the support of the Fourier transform of $f$. We evaluate the spectral radius of a pseudodifferential operator. As applications, certain non-convex and convex cases of the well-known Paley–Wiener theorem are obtained. We also consider the solvability of pseudodifferential equations.
@article{SM_1995_186_7_a0,
     author = {Ha Huy Bang},
     title = {On an algebra of pseudodifferential operators},
     journal = {Sbornik. Mathematics},
     pages = {929--940},
     publisher = {mathdoc},
     volume = {186},
     number = {7},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_7_a0/}
}
TY  - JOUR
AU  - Ha Huy Bang
TI  - On an algebra of pseudodifferential operators
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 929
EP  - 940
VL  - 186
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_7_a0/
LA  - en
ID  - SM_1995_186_7_a0
ER  - 
%0 Journal Article
%A Ha Huy Bang
%T On an algebra of pseudodifferential operators
%J Sbornik. Mathematics
%D 1995
%P 929-940
%V 186
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_7_a0/
%G en
%F SM_1995_186_7_a0
Ha Huy Bang. On an algebra of pseudodifferential operators. Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 929-940. http://geodesic.mathdoc.fr/item/SM_1995_186_7_a0/