On higher-order differential operators with a~regular singularity
Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 901-928

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary-value problem for the non-self-adjoint differential operators $$ \ell y\equiv y^{(n)}+\sum_{j=0}^{n-2}\biggl(\frac{\nu_j}{x^{n-j}}+q_j(x)\biggr)y^{(j)}, \qquad 0, $$ with a regular singularity at zero is investigated. Theorems are obtained on completeness, on the expansion with respect to the eigen- and associated functions of the boundary-value problem on a finite interval, and on equiconvergence. In addition, the inverse problem is investigated.
@article{SM_1995_186_6_a6,
     author = {V. A. Yurko},
     title = {On higher-order differential operators with a~regular singularity},
     journal = {Sbornik. Mathematics},
     pages = {901--928},
     publisher = {mathdoc},
     volume = {186},
     number = {6},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_6_a6/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - On higher-order differential operators with a~regular singularity
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 901
EP  - 928
VL  - 186
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_6_a6/
LA  - en
ID  - SM_1995_186_6_a6
ER  - 
%0 Journal Article
%A V. A. Yurko
%T On higher-order differential operators with a~regular singularity
%J Sbornik. Mathematics
%D 1995
%P 901-928
%V 186
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_6_a6/
%G en
%F SM_1995_186_6_a6
V. A. Yurko. On higher-order differential operators with a~regular singularity. Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 901-928. http://geodesic.mathdoc.fr/item/SM_1995_186_6_a6/