On higher-order differential operators with a regular singularity
Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 901-928 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A boundary-value problem for the non-self-adjoint differential operators $$ \ell y\equiv y^{(n)}+\sum_{j=0}^{n-2}\biggl(\frac{\nu_j}{x^{n-j}}+q_j(x)\biggr)y^{(j)}, \qquad 0<x<T, $$ with a regular singularity at zero is investigated. Theorems are obtained on completeness, on the expansion with respect to the eigen- and associated functions of the boundary-value problem on a finite interval, and on equiconvergence. In addition, the inverse problem is investigated.
@article{SM_1995_186_6_a6,
     author = {V. A. Yurko},
     title = {On higher-order differential operators with a~regular singularity},
     journal = {Sbornik. Mathematics},
     pages = {901--928},
     year = {1995},
     volume = {186},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_6_a6/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - On higher-order differential operators with a regular singularity
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 901
EP  - 928
VL  - 186
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_6_a6/
LA  - en
ID  - SM_1995_186_6_a6
ER  - 
%0 Journal Article
%A V. A. Yurko
%T On higher-order differential operators with a regular singularity
%J Sbornik. Mathematics
%D 1995
%P 901-928
%V 186
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1995_186_6_a6/
%G en
%F SM_1995_186_6_a6
V. A. Yurko. On higher-order differential operators with a regular singularity. Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 901-928. http://geodesic.mathdoc.fr/item/SM_1995_186_6_a6/

[1] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[2] Kostyuchenko A. G., Sargsyan I. S., Raspredelenie sobstvennykh znachenii. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1979 | MR | Zbl

[3] Birkhoff G. D., “Boundary value and expansion problems of ordinary linear differential equations”, Trans. Amer. Maths. Soc., 9:4 (1908), 373–397 | DOI | MR

[4] Tamarkin Ya. D., O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii, Petrograd, 1917 | Zbl

[5] Stone M. H., “A comparison of the series of Fourier and Birkhoff”, Trans. Amer. Math. Soc., 28:4 (1926), 695–761 | DOI | MR

[6] Khromov A. P., “Razlozhenie po sobstvennym funktsiyam obyknovennykh lineinykh differentsialnykh operatorov s neregulyarnymi raspadayuschimisya kraevymi usloviyami”, Matem. sb., 70 (112):3 (1966), 310–329 | MR

[7] Sakhnovich L. A., “Obratnaya zadacha dlya differentsialnykh operatorov poryadka $n>2$ s analiticheskimi koeffitsientami”, Matem. sb., 46 (88):1 (1958), 61–76 | MR

[8] Leibenzon Z. L., “Obratnaya zadacha spektralnogo analiza dlya differentsialnykh operatorov vysshikh poryadkov”, Tr. MMO, 15, URSS, M., 1966, 70–144 | MR | Zbl

[9] Beals R., “The inverse problem for ordinary differential operators on the line”, Amer. J. Math., 107:2 (1985), 281–366 | DOI | MR | Zbl

[10] Khachatryan I. G., “O nekotorykh obratnykh zadachakh dlya differentsialnykh operatorov vysshikh poryadkov na poluosi”, Funktsion. analiz i ego pril., 17:1 (1983), 40–52 | MR | Zbl

[11] Yurko V. A., “Obratnaya zadacha dlya differentsialnykh uravnenii s osobennostyu”, Differents. uravneniya, 28:8 (1992), 1355–1362 | MR | Zbl

[12] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[13] Vatson G., Teoriya besselevykh funktsii, T. 1, Gostekhizdat, M.–L., 1949

[14] Titchmarsh E., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, T. 1, IL, M., 1960

[15] Gasymov M. G., “Razlozhenie po sobstvennym funktsiyam nesamosopryazhennogo differentsialnogo operatora vtorogo poryadka s osobennostyu v nule”, Trudy letnei shkoly po spektralnoi teorii operatorov i teorii predstavleniya grupp, Izd-vo ELM, Baku, 1975 | MR | Zbl

[16] Stashevskaya V. V., “Ob obratnykh zadachakh spektralnogo analiza dlya odnogo klassa differentsialnykh uravnenii”, DAN SSSR, 93:3 (1953), 409–412

[17] Yurko V. A., “On higher order differential operators with a singular point”, Inverse Problems, 9:4 (1993), 495–502 | DOI | MR | Zbl

[18] Yurko V. A., “Vosstanovlenie nesamosopryazhennykh differentsialnykh operatorov na poluosi po matritse Veilya”, Matem. sb., 182:3 (1991), 431–456

[19] Yurko V. A., “Vosstanovlenie differentsialnykh operatorov vysshikh poryadkov”, Differents. uravneniya, 25:9 (1989), 1540–1550 | MR | Zbl

[20] Yurko V. A., “Solution of the Boussinesq equation on the half-line by the inverse problem method”, Inverse Problems, 7 (1991), 727–738 | DOI | MR

[21] Privalov I. I., Vvedenie v teoriyu funktsii kompleksnogo peremennogo, Nauka, M., 1967 | MR

[22] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR