Necessary and sufficient conditions in semicontinuity and convergence theorems with a~functional
Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 847-878

Voir la notice de l'article provenant de la source Math-Net.Ru

For the functional $$ {\mathfrak I}(u(x),\xi (x))=\int _\Omega L(x,u(x),\xi (x))\,dx $$ ($L(x,u,v)\colon{\mathbb R}^n\times{\mathbb R}^q\times{\mathbb R}^l\to{\mathbb R}$ satisfies the Caratheodory condition, and $L(x,u,v)\geqslant-\alpha(|u|+|v|)+\beta$, $\alpha>0$, $\beta\in{\mathbb R}$) it is proved that: 1) ${\mathfrak I}(u(x),\xi(x))$ is lower semicontinuous on a fixed pair $(u_0(x),\xi_0(x))$ of function $({\mathfrak I}(u_0(x),\xi_0(x))\infty)$ with respect to convergence of $u_k(x)$ to $u_0(x)$ in $L_1$ and weak convergence of $\xi_k(x)$ to $\xi_0(x)$ in $L_1$ if an only if for a.e. $x\in\Omega$ the function $L(x,u_0(x),v)$ is convex at the point $v=\xi_0(x)$; 2) strong convergence of $u_k(x)$ to $u_0(x)$ in $L_1$, weak convergence of $\xi_k(x)$ to $\xi _0(x)$ in $L_1$, and convergence of the values of the functional ${\mathfrak I}(u_k,\xi_k)$ to ${\mathfrak I}(u_0,\xi_0)\infty$ imply strong convergence of $\xi _k(x)$ to $\xi_0(x)$ if and only if for a.e. $x\in\Omega$ the function $L(x,u_0(x),v)$ is strictly convex at the point $v=\xi_0(x)$. Analogous results are obtained for problems with restrictions on the ranges of the functions $\xi_k(x)$ and in the gradient scalar case: $l=nq$, $\min\{n,q\}=1$, $\xi(x)=\nabla u(x)$.
@article{SM_1995_186_6_a4,
     author = {M. A. Sychev},
     title = {Necessary and sufficient conditions in semicontinuity and convergence theorems with a~functional},
     journal = {Sbornik. Mathematics},
     pages = {847--878},
     publisher = {mathdoc},
     volume = {186},
     number = {6},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_6_a4/}
}
TY  - JOUR
AU  - M. A. Sychev
TI  - Necessary and sufficient conditions in semicontinuity and convergence theorems with a~functional
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 847
EP  - 878
VL  - 186
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_6_a4/
LA  - en
ID  - SM_1995_186_6_a4
ER  - 
%0 Journal Article
%A M. A. Sychev
%T Necessary and sufficient conditions in semicontinuity and convergence theorems with a~functional
%J Sbornik. Mathematics
%D 1995
%P 847-878
%V 186
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_6_a4/
%G en
%F SM_1995_186_6_a4
M. A. Sychev. Necessary and sufficient conditions in semicontinuity and convergence theorems with a~functional. Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 847-878. http://geodesic.mathdoc.fr/item/SM_1995_186_6_a4/