Necessary and sufficient conditions in semicontinuity and convergence theorems with a functional
Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 847-878 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the functional $$ {\mathfrak I}(u(x),\xi (x))=\int _\Omega L(x,u(x),\xi (x))\,dx $$ ($L(x,u,v)\colon{\mathbb R}^n\times{\mathbb R}^q\times{\mathbb R}^l\to{\mathbb R}$ satisfies the Caratheodory condition, and $L(x,u,v)\geqslant-\alpha(|u|+|v|)+\beta$, $\alpha>0$, $\beta\in{\mathbb R}$) it is proved that: 1) ${\mathfrak I}(u(x),\xi(x))$ is lower semicontinuous on a fixed pair $(u_0(x),\xi_0(x))$ of function $({\mathfrak I}(u_0(x),\xi_0(x))<\infty)$ with respect to convergence of $u_k(x)$ to $u_0(x)$ in $L_1$ and weak convergence of $\xi_k(x)$ to $\xi_0(x)$ in $L_1$ if an only if for a.e. $x\in\Omega$ the function $L(x,u_0(x),v)$ is convex at the point $v=\xi_0(x)$; 2) strong convergence of $u_k(x)$ to $u_0(x)$ in $L_1$, weak convergence of $\xi_k(x)$ to $\xi _0(x)$ in $L_1$, and convergence of the values of the functional ${\mathfrak I}(u_k,\xi_k)$ to ${\mathfrak I}(u_0,\xi_0)<\infty$ imply strong convergence of $\xi _k(x)$ to $\xi_0(x)$ if and only if for a.e. $x\in\Omega$ the function $L(x,u_0(x),v)$ is strictly convex at the point $v=\xi_0(x)$. Analogous results are obtained for problems with restrictions on the ranges of the functions $\xi_k(x)$ and in the gradient scalar case: $l=nq$, $\min\{n,q\}=1$, $\xi(x)=\nabla u(x)$.
@article{SM_1995_186_6_a4,
     author = {M. A. Sychev},
     title = {Necessary and sufficient conditions in semicontinuity and convergence theorems with a~functional},
     journal = {Sbornik. Mathematics},
     pages = {847--878},
     year = {1995},
     volume = {186},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_6_a4/}
}
TY  - JOUR
AU  - M. A. Sychev
TI  - Necessary and sufficient conditions in semicontinuity and convergence theorems with a functional
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 847
EP  - 878
VL  - 186
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_6_a4/
LA  - en
ID  - SM_1995_186_6_a4
ER  - 
%0 Journal Article
%A M. A. Sychev
%T Necessary and sufficient conditions in semicontinuity and convergence theorems with a functional
%J Sbornik. Mathematics
%D 1995
%P 847-878
%V 186
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1995_186_6_a4/
%G en
%F SM_1995_186_6_a4
M. A. Sychev. Necessary and sufficient conditions in semicontinuity and convergence theorems with a functional. Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 847-878. http://geodesic.mathdoc.fr/item/SM_1995_186_6_a4/

[1] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1976 | MR

[2] Dakoronya B., “Slabaya nepreryvnost i slabaya polunepreryvnost snizu nelineinykh funktsionalov”, UMN, 44:6 (1989), 35–98 | MR

[3] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[4] Tonelli L., “La semicontinuita nel calcolo delle variazioni”, Rend. Circ. Matem. Palermo, 44 (1920), 167–249 | DOI | Zbl

[5] Marcellini P., Sbordone C., “Semicontinuity problems in the calculus of variations”, Nonlinear Anal., 4:2 (1980), 241–257 | DOI | MR | Zbl

[6] Marcellini P., “Non convex integrals in the calculus of variations”, Lecture Notes in Math., 1446, 1989, 16–58 | MR

[7] Guseinov F. V., Rasshireniya mnogomernykh variatsionnykh zadach i smezhnye voprosy, Dis. ...dokt. fiz.-matem. nauk, Institut matematiki SO AN SSSR, Novosibirsk, 1989

[8] Dacorogna B., Direct methods in the calculus of variations, Springer-Verlag, Berlin, 1989 | MR

[9] Ball J. M., “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Ration. Mech. Anal., 63 (1977), 337–403 | DOI | MR | Zbl

[10] Polyak B. T., “Polunepreryvnost integralnykh funktsionalov i teoremy suschestvovaniya v zadachakh na ekstremum”, Matem. sb., 78:1 (1969), 65–85

[11] Ioffe A. D., “On lower semicontinuity of integral functionals”, SIAM J. Contr. and Optim., 15:4 (1977), 521–538 | DOI | MR | Zbl

[12] Olech C., “A characterization of $L^1$-weak lower semicontinuity of integral functionals”, Bull. Acad. Pol. Sci. Ser. Math. Astronom. Phys., 25 (1977), 135–142 | MR | Zbl

[13] Morozov S. F., Plotnikov V. I., “O neobkhodimykh i dostatochnykh usloviyakh nepreryvnosti i polunepreryvnosti funktsionalov variatsionnogo ischisleniya”, Matem. sb., 57:3 (1962), 265–280 | MR | Zbl

[14] Bogolyubov N. N., Novi metodi v variatsiinomu chislenniyu, Tekhniko-teoretichne vidavnitstvo, Khrk.-K., 1932

[15] Bogolyubov N. N., Izbrannye trudy. V 3-kh tomakh, T. 1, K., Nauk. dumka, 1969

[16] Reshetnyak Yu. G., “Obschie teoremy o polunepreryvnosti i skhodimosti s funktsionalom”, Sib. matem. zhurn., VIII:5 (1967), 1052–1071

[17] Vasilenko G. N., “O skhodimosti s funktsionalom”, Sib. matem. zhurn., XXVII:1 (1986), 26–35 | MR

[18] Vizintin A., “Strong convergence results related to strict convexity”, Communns. Part. Different. Equat., 1984, no. 9, 439–466 | DOI

[19] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[20] Rockafellar R., “Integral functionals, normal integrands and measurable selections”, Lect. Notes in Math., 543, 1975, 157–208 | MR

[21] Danford N., Shvarts Dzh. T., Lineinye operatory, IL, M., 1962

[22] Yang L., Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1974 | MR

[23] Matov V. I., “Issledovanie odnoi zadachi mnogomernogo variatsionnogo ischisleniya”, Vestnik MGU. Ser. matem., 1978, no. 1, 61–60 | MR

[24] Valadier M., “Young measures”, Lect. Notes in Math., 1446, 1989, 152–189 | MR

[25] Evans L. C., Gariepy R. F., “Some remarks concerning quasiconvexity and strong convergence”, Proc. Royal Society of Edinburgh. Sect. A, 106 (1987), 53–61 | MR | Zbl

[26] Cellina A., Zagatti S., “A vertion of Olech's Lemma in a problem of the Calculus of Variations”, SIAM J. Control and Optim., 32:4 (1994), 1114–1128 | DOI | MR

[27] Sychev M. A., “Kriterii nepreryvnosti integralnogo funktsionala na posledovatelnosti funktsii”, Sib. matem. zhurn., 36:1 (1995), 203–214 | MR | Zbl

[28] Cellina A., “On minima of a functional of the gradient: necessary conditions”, Nonlinear Analysis, 20:4 (1993), 337–341 | DOI | MR | Zbl

[29] Cellina A., “On minima of a functional of the gradient: sufficient result”, Nonlinear Analysis, 20:4 (1993), 343–347 | DOI | MR | Zbl

[30] Frieske G., A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems, Preprint, Herriot-Watt Univ. Edinburgh, 1992

[31] Olech C., “Existence theory in optimal control”, Control theory and topics in funct. anal., V. I, Vienna, 1976, 291–328 | MR | Zbl

[32] Balder E. J., “On weak convergence implying strong convergence under extremal conditions”, J. Math. Anal. Appl., 163 (1992) | DOI | MR | Zbl

[33] Amrani A., Castaing C., Valadier M., “Méthodes de troncature appliqueés a dès problèmes de convergence faible on fort daus $L_1$”, Archive Ration. Mech. Anal., 117 (1992), 167–191 | DOI | MR | Zbl

[34] Rzežuchowski T., “Impact of dentability on weak convergence in $L_1$”, Bollettino U.M.I., 6-A (1992), 71–80 | MR | Zbl

[35] Balder E. J., “From weak to strong convergence in $L$-spaces via $K$-convergence”, Ann. Mat. Pura ed appl., CLXI (1993), 337–349 | DOI | MR