Analytic capacity: discrete approach and curvature of measure
Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 827-846

Voir la notice de l'article provenant de la source Math-Net.Ru

Certain discrete 'computable' quantities are introduced, and their interconnections and relations with analytic capacity are found out. The concept of curvature of a measure is introduced, which emerges naturally in the computations of the $L^2$-norm of the Cauchy transform of this measure. A lower bound on the analytic capacity, which uses the measure curvature and which has, to this extent, a geometric nature, is obtained.
@article{SM_1995_186_6_a3,
     author = {M. S. Mel'nikov},
     title = {Analytic capacity: discrete approach and curvature of measure},
     journal = {Sbornik. Mathematics},
     pages = {827--846},
     publisher = {mathdoc},
     volume = {186},
     number = {6},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_6_a3/}
}
TY  - JOUR
AU  - M. S. Mel'nikov
TI  - Analytic capacity: discrete approach and curvature of measure
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 827
EP  - 846
VL  - 186
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_6_a3/
LA  - en
ID  - SM_1995_186_6_a3
ER  - 
%0 Journal Article
%A M. S. Mel'nikov
%T Analytic capacity: discrete approach and curvature of measure
%J Sbornik. Mathematics
%D 1995
%P 827-846
%V 186
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_6_a3/
%G en
%F SM_1995_186_6_a3
M. S. Mel'nikov. Analytic capacity: discrete approach and curvature of measure. Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 827-846. http://geodesic.mathdoc.fr/item/SM_1995_186_6_a3/