Analytic capacity: discrete approach and curvature of measure
Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 827-846 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Certain discrete 'computable' quantities are introduced, and their interconnections and relations with analytic capacity are found out. The concept of curvature of a measure is introduced, which emerges naturally in the computations of the $L^2$-norm of the Cauchy transform of this measure. A lower bound on the analytic capacity, which uses the measure curvature and which has, to this extent, a geometric nature, is obtained.
@article{SM_1995_186_6_a3,
     author = {M. S. Mel'nikov},
     title = {Analytic capacity: discrete approach and curvature of measure},
     journal = {Sbornik. Mathematics},
     pages = {827--846},
     year = {1995},
     volume = {186},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_6_a3/}
}
TY  - JOUR
AU  - M. S. Mel'nikov
TI  - Analytic capacity: discrete approach and curvature of measure
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 827
EP  - 846
VL  - 186
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_6_a3/
LA  - en
ID  - SM_1995_186_6_a3
ER  - 
%0 Journal Article
%A M. S. Mel'nikov
%T Analytic capacity: discrete approach and curvature of measure
%J Sbornik. Mathematics
%D 1995
%P 827-846
%V 186
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1995_186_6_a3/
%G en
%F SM_1995_186_6_a3
M. S. Mel'nikov. Analytic capacity: discrete approach and curvature of measure. Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 827-846. http://geodesic.mathdoc.fr/item/SM_1995_186_6_a3/

[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[2] Ahlfors L., “Bounded analytic functions”, Duke Math. J., 14 (1947), 1–11 | DOI | MR | Zbl

[3] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR

[4] Vitushkin A. G., Ivanov L. D., Melnikov M. S., Analytic capacity and rational approximation. Linear and complex analysis. Problem book, Lecture Notes in Math., 1043, Springer-Verlag, Berlin–New York, 1984

[5] Davie A. M., “Analytic capacity and approximation problems”, Trans. Amer. Math. Soc., 171 (1972), 409–414 | DOI | MR

[6] Garabedian P., “The classes $L_p$ and conformal mapping”, Trans. Amer. Math. Soc., 69 (1950), 392–415 | DOI | MR | Zbl

[7] Garnett J., Analytic capacity and measure, Lecture Notes in Math., 297, Springer-Verlag, Berlin–New York, 1972 | MR | Zbl

[8] Berger M., Gostiaux B., Géométrie differentielle: variétés, courbes et surfaces, Presses Universitaires de France, 1987 | MR | Zbl

[9] Davie A. M., Øksendal B., “Analytic capacity and differentiability properties of finely harmonic functions”, Acta Math., 140 (1982), 127–152 | DOI | MR

[10] Calderón A. P., “Cauchy integrals on Lipschitz curves and related operators”, Proc. Nat. Acad. Sci. USA, 74 (1977), 1324–1327 | DOI | MR | Zbl

[11] Coifman R. R., McIntosh A., Meyer Y., “L'integral de Cauchy définit un operateur borné sur $L^2$ pour les courbes lipschitziennes”, Ann. of Math., 115 (1982), 361–387 | DOI | MR