@article{SM_1995_186_6_a3,
author = {M. S. Mel'nikov},
title = {Analytic capacity: discrete approach and curvature of measure},
journal = {Sbornik. Mathematics},
pages = {827--846},
year = {1995},
volume = {186},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_6_a3/}
}
M. S. Mel'nikov. Analytic capacity: discrete approach and curvature of measure. Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 827-846. http://geodesic.mathdoc.fr/item/SM_1995_186_6_a3/
[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[2] Ahlfors L., “Bounded analytic functions”, Duke Math. J., 14 (1947), 1–11 | DOI | MR | Zbl
[3] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR
[4] Vitushkin A. G., Ivanov L. D., Melnikov M. S., Analytic capacity and rational approximation. Linear and complex analysis. Problem book, Lecture Notes in Math., 1043, Springer-Verlag, Berlin–New York, 1984
[5] Davie A. M., “Analytic capacity and approximation problems”, Trans. Amer. Math. Soc., 171 (1972), 409–414 | DOI | MR
[6] Garabedian P., “The classes $L_p$ and conformal mapping”, Trans. Amer. Math. Soc., 69 (1950), 392–415 | DOI | MR | Zbl
[7] Garnett J., Analytic capacity and measure, Lecture Notes in Math., 297, Springer-Verlag, Berlin–New York, 1972 | MR | Zbl
[8] Berger M., Gostiaux B., Géométrie differentielle: variétés, courbes et surfaces, Presses Universitaires de France, 1987 | MR | Zbl
[9] Davie A. M., Øksendal B., “Analytic capacity and differentiability properties of finely harmonic functions”, Acta Math., 140 (1982), 127–152 | DOI | MR
[10] Calderón A. P., “Cauchy integrals on Lipschitz curves and related operators”, Proc. Nat. Acad. Sci. USA, 74 (1977), 1324–1327 | DOI | MR | Zbl
[11] Coifman R. R., McIntosh A., Meyer Y., “L'integral de Cauchy définit un operateur borné sur $L^2$ pour les courbes lipschitziennes”, Ann. of Math., 115 (1982), 361–387 | DOI | MR