The Cauchy problem in classes of increasing functions for the~equation of filtration with convection
Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 803-825
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Cauchy problem with a non-negative continuous initial function for the equation
$$
u_t=(u^m)_{xx}+c(u^n)_x,
$$
where $m>1$, $m\geqslant n\geqslant 1$ and $c$ is a positive constant. We prove a number of existence and uniqueness theorems for generalized solutions increasing at infinity for this Cauchy problem; we also investigate the behaviour of these solutions for large values of the time.
@article{SM_1995_186_6_a2,
author = {A. L. Gladkov},
title = {The {Cauchy} problem in classes of increasing functions for the~equation of filtration with convection},
journal = {Sbornik. Mathematics},
pages = {803--825},
publisher = {mathdoc},
volume = {186},
number = {6},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_6_a2/}
}
TY - JOUR AU - A. L. Gladkov TI - The Cauchy problem in classes of increasing functions for the~equation of filtration with convection JO - Sbornik. Mathematics PY - 1995 SP - 803 EP - 825 VL - 186 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_186_6_a2/ LA - en ID - SM_1995_186_6_a2 ER -
A. L. Gladkov. The Cauchy problem in classes of increasing functions for the~equation of filtration with convection. Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 803-825. http://geodesic.mathdoc.fr/item/SM_1995_186_6_a2/