The Cauchy problem in classes of increasing functions for the equation of filtration with convection
Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 803-825 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Cauchy problem with a non-negative continuous initial function for the equation $$ u_t=(u^m)_{xx}+c(u^n)_x, $$ where $m>1$, $m\geqslant n\geqslant 1$ and $c$ is a positive constant. We prove a number of existence and uniqueness theorems for generalized solutions increasing at infinity for this Cauchy problem; we also investigate the behaviour of these solutions for large values of the time.
@article{SM_1995_186_6_a2,
     author = {A. L. Gladkov},
     title = {The {Cauchy} problem in classes of increasing functions for the~equation of filtration with convection},
     journal = {Sbornik. Mathematics},
     pages = {803--825},
     year = {1995},
     volume = {186},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_6_a2/}
}
TY  - JOUR
AU  - A. L. Gladkov
TI  - The Cauchy problem in classes of increasing functions for the equation of filtration with convection
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 803
EP  - 825
VL  - 186
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_6_a2/
LA  - en
ID  - SM_1995_186_6_a2
ER  - 
%0 Journal Article
%A A. L. Gladkov
%T The Cauchy problem in classes of increasing functions for the equation of filtration with convection
%J Sbornik. Mathematics
%D 1995
%P 803-825
%V 186
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1995_186_6_a2/
%G en
%F SM_1995_186_6_a2
A. L. Gladkov. The Cauchy problem in classes of increasing functions for the equation of filtration with convection. Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 803-825. http://geodesic.mathdoc.fr/item/SM_1995_186_6_a2/

[1] Diaz J. I., Kersner R., “On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium”, J. Diff. Equat., 69:3 (1987), 368–403 | DOI | MR | Zbl

[2] Gilding B. H., “Improved theory for a nonlinear degenerate parabolic equation”, Annali Scu. Norm. Sup. Pisa. Cl. sci. 4, 16 (1989), 165–224 | MR | Zbl

[3] Kalashnikov A. S., “O kharaktere rasprostraneniya vozmuschenii v protsessakh, opisyvaemykh kvazilineinymi vyrozhdayuschimisya parabolicheskimi uravneniyami”, Tr. sem. im. I. G. Petrovskogo, 1, Izd-vo Mosk. un-ta, M., 1975, 135–144 | Zbl

[4] Gilding B. H., “Properties of solutions of equations in the theory of infiltration”, Arch. Rat. Mech. Anal., 65:3 (1977), 203–225 | DOI | MR | Zbl

[5] Diaz J. I., Kersner R., “Nonexistence d'une des frontieres libres dans une equation degeneree en theorie de la filtration”, C. R. Acad. Sci. Paris, 296:1 (1983), 505–508 | MR | Zbl

[6] Gilding B. H., “The occurence of interfaces in nonlinear diffusion–advection processes”, Arch. Rat. Mech. Anal., 100:3 (1988), 243–263 | DOI | MR | Zbl

[7] Alvarez L., Diaz J. I., Kersner R., “On the initial growth of the interfaces in nonlinear diffusion – convection processes”, Nonlinear Diffusion Equations and their Equilibrium States, 1, 1988, 1–20 | MR | Zbl

[8] Kalashnikov A. S., “Nekotorye voprosy kachestvennoi teorii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, UMN, 42:2 (1987), 135–176 | MR | Zbl

[9] Kalashnikov A. S., “Zadacha Koshi v klasse rastuschikh funktsii dlya uravnenii tipa nestatsionarnoi filtratsii”, Vestn. MGU. Ser. 1, matem., mekh., 1963, no. 6, 17–27 | MR | Zbl

[10] Benilan P., Crandall M. G., Pierre M., “Solutions of the porous medium equation in ${\mathbb R}^N$ under optimal conditions on initial values”, Indiana Univ. Math. J., 33:1 (1984), 51–87 | DOI | MR | Zbl

[11] Aronson D. G., Caffarelli L. A., “The initial trace of a solution of the porous media equation”, Trans. Amer. Math. Soc., 280:1 (1983), 351–366 | DOI | MR | Zbl

[12] Dahlberg B. E. G., Kenig C. E., “Non-negative soluions of the porous medium equation”, Comm. Part. Diff. Equat., 9 (1984), 409–437 | DOI | MR | Zbl

[13] Kalashnikov A. S., “O vliyanii pogloscheniya na rasprostranenie tepla v srede s teploprovodnostyu, zavisyaschei ot temperatury”, ZhVM i MF, 16 (1976), 689–696 | MR | Zbl

[14] Kamin S., Peletier L. A., Vazquez J. L., “A nonlinear diffusion – absorption equation with unbounded initial data”, Nonlinear Diffusion Equations and their Equilibrium States, 3, 1992, 243–263 | MR

[15] DiBenedetto E., “Continuity of weak solutions to a general porous media equation”, Indiana Univ. Math. J., 32:1 (1983), 83–118 | DOI | MR | Zbl

[16] Kersner R., “Degenerate parabolic equations with general nonlinearities”, Nonlinear Anal., 4 (1980), 1043–1062 | DOI | MR | Zbl

[17] Gladkov A. L., “Zadacha Koshi dlya nekotorykh vyrozhdayuschikhsya kvazilineinykh parabolicheskikh uravnenii s pogloscheniem”, Sibirskii matem. zhurnal, 34 (1993), 47–64 | MR | Zbl

[18] Khairer E., Nëersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR