A definitive version of the local two-radii theorem
Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 783-802 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Various classes of functions with zero integrals over all balls of a fixed radius are studied. For functions in such classes a description in the form of a series in special functions is obtained and a uniqueness theorem is proved. These results make it possible to solve completely the problem of existence of a non-trivial function with zero integrals over all balls of radius assuming either of two given values.
@article{SM_1995_186_6_a1,
     author = {V. V. Volchkov},
     title = {A definitive version of the~local two-radii theorem},
     journal = {Sbornik. Mathematics},
     pages = {783--802},
     year = {1995},
     volume = {186},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_6_a1/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - A definitive version of the local two-radii theorem
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 783
EP  - 802
VL  - 186
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_6_a1/
LA  - en
ID  - SM_1995_186_6_a1
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T A definitive version of the local two-radii theorem
%J Sbornik. Mathematics
%D 1995
%P 783-802
%V 186
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1995_186_6_a1/
%G en
%F SM_1995_186_6_a1
V. V. Volchkov. A definitive version of the local two-radii theorem. Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 783-802. http://geodesic.mathdoc.fr/item/SM_1995_186_6_a1/

[1] Zalcman L., “Analyticity and the Pompeiu problem”, Arch. Rat. Mech. Anal., 47 (1972), 237–254 | DOI | MR | Zbl

[2] Zalcman L., “Offbeat integral geometry”, Amer. Math. Monthly, 87:3 (1980), 161–175 | DOI | MR | Zbl

[3] Berenstein C. A., Zalcman L., “Pompeiu's problem on symmetric spaces”, Comment. Math. Helv., 55:4 (1980), 593–621 | DOI | MR | Zbl

[4] Smith I. D., “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Proc. Cambridge Philos. Soc., 72 (1972), 403–416 | DOI | MR | Zbl

[5] Berenstein C. A., Gay R., “A local version of the two-circles theorem”, Israel J. Math., 55 (1986), 267–288 | DOI | MR | Zbl

[6] Berenstein C. A., Gay R., Yger A., “Inversion of the local Pompeiu transform”, J. Analyse Math., 54 (1990), 259–287 | DOI | MR | Zbl

[7] Berenstein K. A., Struppa D., “Kompleksnyi analiz i uravneniya v svertkakh”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundam. napravleniya, 54, VINITI, 1989, 5–111 | MR

[8] Volchkov V. V., “Novye teoremy o srednem dlya reshenii uravneniya Gelmgoltsa”, Matem. sb., 184:7 (1993), 71–78 | MR | Zbl

[9] Volchkov V. V., “Ob odnoi probleme Zaltsmana i ee obobscheniyakh”, Matem. zametki, 53:2 (1993), 30–36 | MR | Zbl

[10] Volchkov V. V., “Teoremy edinstvennosti dlya kratkikh lakunarnykh trigonometricheskikh ryadov”, Matem. zametki, 51:6 (1992), 27–31 | MR | Zbl

[11] Volchkov V. V., “Teoremy o sharovykh srednikh dlya nekotorykh differentsialnykh uravnenii”, Dokl. AN USSR, 1992, no. 5, 9–12

[12] Volchkov V. V., “O funktsiyakh s nulevymi integralami po nekotorym mnozhestvam”, Dokl. AN USSR, 1990, no. 8, 9–11 | MR | Zbl

[13] Ion F., Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi proizvodnymi, IL, M., 1958

[14] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, 2-e izd., Nauka, M., 1991 | MR | Zbl

[15] Korenev B. G., Vvedenie v teoriyu besselevykh funktsii, Nauka, M., 1971 | MR | Zbl

[16] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, 3-e izd., Nauka, M., 1979 | MR | Zbl

[17] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[18] Tolstov G. P., Ryady Fure, 3-e izd., Nauka, M., 1980 | MR | Zbl

[19] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987 | MR

[20] Leng S., $\operatorname {SL}_2(R)$, Mir, M., 1977 | MR

[21] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR

[22] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[23] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[24] Berenstein C. A., Gay R., Yger A., “The three squares theorem, a local version”, Analysis and Partial Differential Equations, ed. C. Sadosky, Marcel Deccer, New York–Basel, 1990, 35–50 | MR