A definitive version of the~local two-radii theorem
Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 783-802

Voir la notice de l'article provenant de la source Math-Net.Ru

Various classes of functions with zero integrals over all balls of a fixed radius are studied. For functions in such classes a description in the form of a series in special functions is obtained and a uniqueness theorem is proved. These results make it possible to solve completely the problem of existence of a non-trivial function with zero integrals over all balls of radius assuming either of two given values.
@article{SM_1995_186_6_a1,
     author = {V. V. Volchkov},
     title = {A definitive version of the~local two-radii theorem},
     journal = {Sbornik. Mathematics},
     pages = {783--802},
     publisher = {mathdoc},
     volume = {186},
     number = {6},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_6_a1/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - A definitive version of the~local two-radii theorem
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 783
EP  - 802
VL  - 186
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_6_a1/
LA  - en
ID  - SM_1995_186_6_a1
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T A definitive version of the~local two-radii theorem
%J Sbornik. Mathematics
%D 1995
%P 783-802
%V 186
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_6_a1/
%G en
%F SM_1995_186_6_a1
V. V. Volchkov. A definitive version of the~local two-radii theorem. Sbornik. Mathematics, Tome 186 (1995) no. 6, pp. 783-802. http://geodesic.mathdoc.fr/item/SM_1995_186_6_a1/