Tartar's method of compensated compactness in averaging the~spectrum of a~mixed problem for an~elliptic equation in a~perforated domain with third boundary condition
Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 753-770

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem described in the title of this paper in the domain $\Omega_\varepsilon$ obtained from a domain $\Omega\in\mathbb R^d$ by periodic perforation with period $\varepsilon Q$, where $Q$ is the unit cube in $\mathbb R^d$. For this problem we use the method of compensated compactness to obtain the first two terms of the asymptotics of the $k$-th eigenvalue in powers of $\varepsilon$ as $\varepsilon\to0$: $\lambda_{\varepsilon,k}=\varepsilon^{-1}\Lambda+\lambda_k+\dotsb$, where $\Lambda$ is a constant independent of $k$ and $\lambda_k$ is the $k$-th eigenvalue of the averaged problem (which turns out to be the Dirichlet problem in the domain $\Omega$) for $k\in\mathbb N$.
@article{SM_1995_186_5_a7,
     author = {S. E. Pastukhova},
     title = {Tartar's method of compensated compactness in averaging the~spectrum of a~mixed problem for an~elliptic equation in a~perforated domain with third boundary condition},
     journal = {Sbornik. Mathematics},
     pages = {753--770},
     publisher = {mathdoc},
     volume = {186},
     number = {5},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_5_a7/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - Tartar's method of compensated compactness in averaging the~spectrum of a~mixed problem for an~elliptic equation in a~perforated domain with third boundary condition
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 753
EP  - 770
VL  - 186
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_5_a7/
LA  - en
ID  - SM_1995_186_5_a7
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T Tartar's method of compensated compactness in averaging the~spectrum of a~mixed problem for an~elliptic equation in a~perforated domain with third boundary condition
%J Sbornik. Mathematics
%D 1995
%P 753-770
%V 186
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_5_a7/
%G en
%F SM_1995_186_5_a7
S. E. Pastukhova. Tartar's method of compensated compactness in averaging the~spectrum of a~mixed problem for an~elliptic equation in a~perforated domain with third boundary condition. Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 753-770. http://geodesic.mathdoc.fr/item/SM_1995_186_5_a7/