Tartar's method of compensated compactness in averaging the~spectrum of a~mixed problem for an~elliptic equation in a~perforated domain with third boundary condition
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 753-770
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the problem described in the title of this paper in the domain $\Omega_\varepsilon$ obtained from a domain $\Omega\in\mathbb R^d$  by periodic perforation with period $\varepsilon Q$, where $Q$ is the unit cube in $\mathbb R^d$. For this problem we use the method of compensated compactness to obtain the first two terms of the asymptotics of the $k$-th eigenvalue in powers of $\varepsilon$ as $\varepsilon\to0$: $\lambda_{\varepsilon,k}=\varepsilon^{-1}\Lambda+\lambda_k+\dotsb$, where $\Lambda$ is a constant independent of $k$ and  $\lambda_k$ is the $k$-th eigenvalue of the averaged problem (which turns out to be the Dirichlet problem in the domain $\Omega$) for $k\in\mathbb N$.
			
            
            
            
          
        
      @article{SM_1995_186_5_a7,
     author = {S. E. Pastukhova},
     title = {Tartar's method of compensated compactness in averaging the~spectrum of a~mixed problem for an~elliptic equation in a~perforated domain with third boundary condition},
     journal = {Sbornik. Mathematics},
     pages = {753--770},
     publisher = {mathdoc},
     volume = {186},
     number = {5},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_5_a7/}
}
                      
                      
                    TY - JOUR AU - S. E. Pastukhova TI - Tartar's method of compensated compactness in averaging the~spectrum of a~mixed problem for an~elliptic equation in a~perforated domain with third boundary condition JO - Sbornik. Mathematics PY - 1995 SP - 753 EP - 770 VL - 186 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_186_5_a7/ LA - en ID - SM_1995_186_5_a7 ER -
%0 Journal Article %A S. E. Pastukhova %T Tartar's method of compensated compactness in averaging the~spectrum of a~mixed problem for an~elliptic equation in a~perforated domain with third boundary condition %J Sbornik. Mathematics %D 1995 %P 753-770 %V 186 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1995_186_5_a7/ %G en %F SM_1995_186_5_a7
S. E. Pastukhova. Tartar's method of compensated compactness in averaging the~spectrum of a~mixed problem for an~elliptic equation in a~perforated domain with third boundary condition. Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 753-770. http://geodesic.mathdoc.fr/item/SM_1995_186_5_a7/
