Tartar's method of compensated compactness in averaging the spectrum of a mixed problem for an elliptic equation in a perforated domain with third boundary condition
Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 753-770 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem described in the title of this paper in the domain $\Omega_\varepsilon$ obtained from a domain $\Omega\in\mathbb R^d$ by periodic perforation with period $\varepsilon Q$, where $Q$ is the unit cube in $\mathbb R^d$. For this problem we use the method of compensated compactness to obtain the first two terms of the asymptotics of the $k$-th eigenvalue in powers of $\varepsilon$ as $\varepsilon\to0$: $\lambda_{\varepsilon,k}=\varepsilon^{-1}\Lambda+\lambda_k+\dotsb$, where $\Lambda$ is a constant independent of $k$ and $\lambda_k$ is the $k$-th eigenvalue of the averaged problem (which turns out to be the Dirichlet problem in the domain $\Omega$) for $k\in\mathbb N$.
@article{SM_1995_186_5_a7,
     author = {S. E. Pastukhova},
     title = {Tartar's method of compensated compactness in averaging the~spectrum of a~mixed problem for an~elliptic equation in a~perforated domain with third boundary condition},
     journal = {Sbornik. Mathematics},
     pages = {753--770},
     year = {1995},
     volume = {186},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_5_a7/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - Tartar's method of compensated compactness in averaging the spectrum of a mixed problem for an elliptic equation in a perforated domain with third boundary condition
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 753
EP  - 770
VL  - 186
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_5_a7/
LA  - en
ID  - SM_1995_186_5_a7
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T Tartar's method of compensated compactness in averaging the spectrum of a mixed problem for an elliptic equation in a perforated domain with third boundary condition
%J Sbornik. Mathematics
%D 1995
%P 753-770
%V 186
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1995_186_5_a7/
%G en
%F SM_1995_186_5_a7
S. E. Pastukhova. Tartar's method of compensated compactness in averaging the spectrum of a mixed problem for an elliptic equation in a perforated domain with third boundary condition. Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 753-770. http://geodesic.mathdoc.fr/item/SM_1995_186_5_a7/

[1] Bensousan A., Lions J. L., Papanicolau G., Asymptotic Analysis for Periodic Structure, North Holland, Amsterdam, 1978 | MR

[2] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[3] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[4] Vanninathan M., “Homogénésation des valeurs propres dans les milieux perforées”, C.R.A.S. Ser. A, 287:I (1978), 403–406 ; II, 823–825 | MR | Zbl | Zbl

[5] Kesavan S., “Homogenization of elliptic eigenvalue problem”, Appl. Math. and Optim., 5:I (1979), 153–167 ; II, 197–216 | DOI | MR | Zbl | MR | Zbl

[6] Melnik T. A., “Asimptoticheskie razlozheniya sobstvennykh znachenii i sobstvennykh funktsii ellipticheskikh kraevykh zadach s bystroostsilliruyuschimi koeffitsientami v perforirovannom kube”, Tr. sem. im. I. G. Petrovskogo, 17, Izd-vo MGU, M., 1993

[7] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[8] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990 | Zbl

[9] Vishik M. I., Lyusternik L. A., “Singulyarnye vyrozhdeniya i pogranichnyi sloi differentsialnykh uravnenii s malym parametrom”, UMN, 12:6 (1957), 3–120 | MR

[10] Oleinik O. A., Iosifyan G. A., “Ob usrednenii sistem s bystro ostsilliruyuschimi koeffitsientami v perforirovannoi oblasti”, N. E. Kochin i razvitie mekhaniki, Nauka, M., 1984, 237–249 | MR

[11] Kurant R., Metody matematicheskoi fiziki, T. I, Gostekhizdat, M., 1951