On groups of diffeomorphisms preserving non-degenerate analytic covector fields
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 741-751
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider analytic covector fields on manifolds of even dimension. A field is called non-degenerate if the exterior differential of the corresponding 1-form is a non-degenerate symplectic structure. It is shown that the groups of diffeomorphisms preserving such fields are finite-dimensional and an estimate of their dimension is given.
			
            
            
            
          
        
      @article{SM_1995_186_5_a6,
     author = {M. A. Parinov},
     title = {On groups of diffeomorphisms preserving non-degenerate analytic covector fields},
     journal = {Sbornik. Mathematics},
     pages = {741--751},
     publisher = {mathdoc},
     volume = {186},
     number = {5},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_5_a6/}
}
                      
                      
                    M. A. Parinov. On groups of diffeomorphisms preserving non-degenerate analytic covector fields. Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 741-751. http://geodesic.mathdoc.fr/item/SM_1995_186_5_a6/
