On strong precompactness of bounded sets of measure-valued solutions of a~first order quasilinear equation
Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 729-740

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article it is proved that bounded sequences of measure-valued solutions of a non-degenerate first order quasilinear equation are precompact in the topology of strong convergence. The general case of flow functions which are merely continuous is considered.
@article{SM_1995_186_5_a5,
     author = {E. Yu. Panov},
     title = {On strong precompactness of bounded sets of measure-valued solutions of a~first order quasilinear equation},
     journal = {Sbornik. Mathematics},
     pages = {729--740},
     publisher = {mathdoc},
     volume = {186},
     number = {5},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_5_a5/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - On strong precompactness of bounded sets of measure-valued solutions of a~first order quasilinear equation
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 729
EP  - 740
VL  - 186
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_5_a5/
LA  - en
ID  - SM_1995_186_5_a5
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T On strong precompactness of bounded sets of measure-valued solutions of a~first order quasilinear equation
%J Sbornik. Mathematics
%D 1995
%P 729-740
%V 186
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_5_a5/
%G en
%F SM_1995_186_5_a5
E. Yu. Panov. On strong precompactness of bounded sets of measure-valued solutions of a~first order quasilinear equation. Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 729-740. http://geodesic.mathdoc.fr/item/SM_1995_186_5_a5/