On strong precompactness of bounded sets of measure-valued solutions of a first order quasilinear equation
Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 729-740 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article it is proved that bounded sequences of measure-valued solutions of a non-degenerate first order quasilinear equation are precompact in the topology of strong convergence. The general case of flow functions which are merely continuous is considered.
@article{SM_1995_186_5_a5,
     author = {E. Yu. Panov},
     title = {On strong precompactness of bounded sets of measure-valued solutions of a~first order quasilinear equation},
     journal = {Sbornik. Mathematics},
     pages = {729--740},
     year = {1995},
     volume = {186},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_5_a5/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - On strong precompactness of bounded sets of measure-valued solutions of a first order quasilinear equation
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 729
EP  - 740
VL  - 186
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_5_a5/
LA  - en
ID  - SM_1995_186_5_a5
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T On strong precompactness of bounded sets of measure-valued solutions of a first order quasilinear equation
%J Sbornik. Mathematics
%D 1995
%P 729-740
%V 186
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1995_186_5_a5/
%G en
%F SM_1995_186_5_a5
E. Yu. Panov. On strong precompactness of bounded sets of measure-valued solutions of a first order quasilinear equation. Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 729-740. http://geodesic.mathdoc.fr/item/SM_1995_186_5_a5/

[1] Kruzhkov S. N., “Obobschennye resheniya zadachi Koshi v tselom dlya nelineinykh uravnenii pervogo poryadka”, DAN SSSR, 187:1 (1969), 29–32 | Zbl

[2] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | MR | Zbl

[3] Tartar L., “Compensated compactness and applications to partial differential equations”, Research notes in mathematics, nonlinear analysis, and mechanics, Heriot-Watt Symposium, V. 4, 1979, 136–212 | MR | Zbl

[4] DiPerna R. J., Generalized solutions to conservation laws,in system of nonlinear partial differential equations, NATO ASI Series, ed. J. M. Ball, D. Reidel Pub. Co., 1983 | MR

[5] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Gostekhizdat, M., 1957 | MR

[6] Dakoronya B., “Slabaya nepreryvnost i slabaya polunepreryvnost snizu nelineinykh funktsionalov”, UMN, 44:4 (1989), 35–98 | MR

[7] Panov E. Yu., “O posledovatelnostyakh meroznachnykh reshenii kvazilineinogo uravneniya pervogo poryadka”, Matem. sb., 185:2 (1994), 87–106 | MR | Zbl

[8] Tartar L., “$H$-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations”, Proceedings of the Royal Society of Edinburgh, 115A:3–4 (1990), 193–230 | MR

[9] Berg I., Lefstrem I., Interpolyatsionnye prostranstva, Mir, M., 1980 | MR

[10] Lions P. L., Perthame B., Tadmor E., “A kinetic formulation of multidimensional scalar conservation laws and related equations”, J. Amer. Math. Soc., 7:1 (1994), 169–191 | DOI | MR | Zbl