On strong precompactness of bounded sets of measure-valued solutions of a~first order quasilinear equation
Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 729-740
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article it is proved that bounded sequences of measure-valued solutions of a non-degenerate first order quasilinear equation are precompact in the topology of strong convergence. The general case of flow functions which are merely continuous is considered.
@article{SM_1995_186_5_a5,
author = {E. Yu. Panov},
title = {On strong precompactness of bounded sets of measure-valued solutions of a~first order quasilinear equation},
journal = {Sbornik. Mathematics},
pages = {729--740},
publisher = {mathdoc},
volume = {186},
number = {5},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_5_a5/}
}
TY - JOUR AU - E. Yu. Panov TI - On strong precompactness of bounded sets of measure-valued solutions of a~first order quasilinear equation JO - Sbornik. Mathematics PY - 1995 SP - 729 EP - 740 VL - 186 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_186_5_a5/ LA - en ID - SM_1995_186_5_a5 ER -
E. Yu. Panov. On strong precompactness of bounded sets of measure-valued solutions of a~first order quasilinear equation. Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 729-740. http://geodesic.mathdoc.fr/item/SM_1995_186_5_a5/