Spectral synthesis for the~differentiation operator on systems of curvilinear strips
Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 711-728

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G_1,\dots,G_q$ be curvilinear strips in the complex plane, and $H(G_1),\dots,H(G_q)$ the spaces of holomorphic functions in the domains $G_1,\dots,G_q$, respectively, endowed with the usual topology of uniform convergence on compact sets. Denote the topological product $H=H(G_1)\times\dots\times H(G_q)$ by $H$. In this paper the structure of closed subspaces of $H$ that are invariant under the action of the operator of componentwise differentiation is investigated.
@article{SM_1995_186_5_a4,
     author = {S. G. Merzlyakov},
     title = {Spectral synthesis for the~differentiation operator on systems of curvilinear strips},
     journal = {Sbornik. Mathematics},
     pages = {711--728},
     publisher = {mathdoc},
     volume = {186},
     number = {5},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_5_a4/}
}
TY  - JOUR
AU  - S. G. Merzlyakov
TI  - Spectral synthesis for the~differentiation operator on systems of curvilinear strips
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 711
EP  - 728
VL  - 186
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_5_a4/
LA  - en
ID  - SM_1995_186_5_a4
ER  - 
%0 Journal Article
%A S. G. Merzlyakov
%T Spectral synthesis for the~differentiation operator on systems of curvilinear strips
%J Sbornik. Mathematics
%D 1995
%P 711-728
%V 186
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_5_a4/
%G en
%F SM_1995_186_5_a4
S. G. Merzlyakov. Spectral synthesis for the~differentiation operator on systems of curvilinear strips. Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 711-728. http://geodesic.mathdoc.fr/item/SM_1995_186_5_a4/