Spectral synthesis for the~differentiation operator on systems of curvilinear strips
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 711-728
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G_1,\dots,G_q$ be curvilinear strips in the complex plane, and $H(G_1),\dots,H(G_q)$ the spaces of holomorphic functions in the domains $G_1,\dots,G_q$, respectively, endowed with the usual topology of uniform convergence on compact sets. Denote the topological product $H=H(G_1)\times\dots\times H(G_q)$ by $H$.  In this paper the structure of closed subspaces of $H$ that are invariant under the action of the operator of componentwise differentiation is investigated.
			
            
            
            
          
        
      @article{SM_1995_186_5_a4,
     author = {S. G. Merzlyakov},
     title = {Spectral synthesis for the~differentiation operator on systems of curvilinear strips},
     journal = {Sbornik. Mathematics},
     pages = {711--728},
     publisher = {mathdoc},
     volume = {186},
     number = {5},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_5_a4/}
}
                      
                      
                    S. G. Merzlyakov. Spectral synthesis for the~differentiation operator on systems of curvilinear strips. Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 711-728. http://geodesic.mathdoc.fr/item/SM_1995_186_5_a4/
