An algorithm for the recognition of 3-spheres (according to Thompson)
Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 695-710 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The question of the existence of an algorithm for determining whether given 3-manifolds are homeomorphic is a key question of low-dimensional topology. An algorithm due to A. Thompson for the recognition of the standard 3-sphere is presented. The use of handle decomposition instead of triangulation greatly simplifies both the formulation and the proof of the algorithm.
@article{SM_1995_186_5_a3,
     author = {S. V. Matveev},
     title = {An algorithm for the~recognition of 3-spheres (according {to~Thompson)}},
     journal = {Sbornik. Mathematics},
     pages = {695--710},
     year = {1995},
     volume = {186},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_5_a3/}
}
TY  - JOUR
AU  - S. V. Matveev
TI  - An algorithm for the recognition of 3-spheres (according to Thompson)
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 695
EP  - 710
VL  - 186
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_5_a3/
LA  - en
ID  - SM_1995_186_5_a3
ER  - 
%0 Journal Article
%A S. V. Matveev
%T An algorithm for the recognition of 3-spheres (according to Thompson)
%J Sbornik. Mathematics
%D 1995
%P 695-710
%V 186
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1995_186_5_a3/
%G en
%F SM_1995_186_5_a3
S. V. Matveev. An algorithm for the recognition of 3-spheres (according to Thompson). Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 695-710. http://geodesic.mathdoc.fr/item/SM_1995_186_5_a3/

[1] Volodin I. A., Kuznetsov V. E., Fomenko A. T., “O probleme algoritmicheskogo raspoznavaniya standartnoi trekhmernoi sfery”, UMN, 29:5 (1974), 71–168 | MR | Zbl

[2] Birman J., Hilden H., “The homeomorphism problem for $S^3$”, Bull. AMS, 79:5 (1973), 1006–1009 | DOI | MR

[3] Homma T., Ochiai M., Takahashi M., “An algorithm for recognizing $S^3$ in $3$-manifolds with Heegaard splittings of genus two”, Osaka J. Math., 17 (1980), 625–648 | MR | Zbl

[4] Rubinstein H., “The solution to the recognition problem for $S^3$”, Lectures (Haifa, Israel. May, 1992)

[5] Thompson A., Thin position and the recognition problem for $S^3$, Preprint, 1994 | MR

[6] Shubert Kh., “Algoritm dlya razlozheniya zatseplenii na prostye slagaemye”, Matematika, sb. perevodov, 10:4 (1966), 45–78

[7] Haken W., “Theorie der Normalflächen. Ein Isotopiekriterium für der Kreisknoten”, Acta Math., 105 (1961), 245–375 | DOI | MR | Zbl

[8] Matveev S. V., Fomenko A. T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo MGU, M., 1990 | MR | Zbl

[9] Jaco W., Oertel U., “An algorithm to decide if a 3-manifold is a Haken manifold”, Topology, 23 (1984), 195–209 | DOI | MR | Zbl

[10] Gabai D., “Foliations and the topology of 3-manifolds, III”, J. Differential Geometry, 26 (1987), 479–536 | MR | Zbl