@article{SM_1995_186_5_a3,
author = {S. V. Matveev},
title = {An algorithm for the~recognition of 3-spheres (according {to~Thompson)}},
journal = {Sbornik. Mathematics},
pages = {695--710},
year = {1995},
volume = {186},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_5_a3/}
}
S. V. Matveev. An algorithm for the recognition of 3-spheres (according to Thompson). Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 695-710. http://geodesic.mathdoc.fr/item/SM_1995_186_5_a3/
[1] Volodin I. A., Kuznetsov V. E., Fomenko A. T., “O probleme algoritmicheskogo raspoznavaniya standartnoi trekhmernoi sfery”, UMN, 29:5 (1974), 71–168 | MR | Zbl
[2] Birman J., Hilden H., “The homeomorphism problem for $S^3$”, Bull. AMS, 79:5 (1973), 1006–1009 | DOI | MR
[3] Homma T., Ochiai M., Takahashi M., “An algorithm for recognizing $S^3$ in $3$-manifolds with Heegaard splittings of genus two”, Osaka J. Math., 17 (1980), 625–648 | MR | Zbl
[4] Rubinstein H., “The solution to the recognition problem for $S^3$”, Lectures (Haifa, Israel. May, 1992)
[5] Thompson A., Thin position and the recognition problem for $S^3$, Preprint, 1994 | MR
[6] Shubert Kh., “Algoritm dlya razlozheniya zatseplenii na prostye slagaemye”, Matematika, sb. perevodov, 10:4 (1966), 45–78
[7] Haken W., “Theorie der Normalflächen. Ein Isotopiekriterium für der Kreisknoten”, Acta Math., 105 (1961), 245–375 | DOI | MR | Zbl
[8] Matveev S. V., Fomenko A. T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo MGU, M., 1990 | MR | Zbl
[9] Jaco W., Oertel U., “An algorithm to decide if a 3-manifold is a Haken manifold”, Topology, 23 (1984), 195–209 | DOI | MR | Zbl
[10] Gabai D., “Foliations and the topology of 3-manifolds, III”, J. Differential Geometry, 26 (1987), 479–536 | MR | Zbl