@article{SM_1995_186_5_a2,
author = {Yu. N. Drozhzhinov and B. I. Zavialov},
title = {Theorems of {Hardy{\textendash}Littlewood} type for signed measures on a~cone},
journal = {Sbornik. Mathematics},
pages = {675--693},
year = {1995},
volume = {186},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_5_a2/}
}
Yu. N. Drozhzhinov; B. I. Zavialov. Theorems of Hardy–Littlewood type for signed measures on a cone. Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 675-693. http://geodesic.mathdoc.fr/item/SM_1995_186_5_a2/
[1] Vladimirov V. S., “Mnogomernoe obobschenie tauberovoi teoremy Khardi i Littlvuda”, Izv. AN SSSR. Ser. matem., 40:5 (1976), 1084–1101 | MR | Zbl
[2] Drozhzhinov Yu. N., Zavyalov B. I., “Tauberovy teoremy dlya obobschennykh funktsii s nositelyami v konusakh”, Matem. sb., 108:1 (1979), 78–90 | MR | Zbl
[3] Yakymiv A. L., “Mnogomernye tauberovy teoremy i ikh primeneniya k vetvyaschimsya protsessam Bellmana–Kharrisa”, Matem. sb., 115:3 (1981), 463–477 | MR | Zbl
[4] Kozlov S. M., “Mnogomernye spektralnye asimptotiki dlya ellipticheskikh operatorov”, DAN SSSR, 268:4 (1983), 789–793 | MR | Zbl
[5] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR
[6] Vladimirov V. S., Drozhzhinov Yu. N., Zavyalov B. I., Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR
[7] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl
[8] Drozhzhinov Yu. N., Zavyalov B. I., “Tauberova teorema dlya kvaziasimptoticheskikh razlozhenii mer s nositelyami v polozhitelnom oktante”, Matem. sb., 185:2 (1994), 57–87
[9] Zavyalov B. I., “Ob asimptoticheskikh svoistvakh funktsii, golomorfnykh v trubchatykh konusakh”, Matem. sb., 136:1 (1988), 97–114 | MR | Zbl