Theorems of Hardy–Littlewood type for signed measures on a cone
Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 675-693 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that the positivity condition plays an important role in theorems of Hardy–Littlewood type. In the multi-dimensional case this condition can be relaxed significantly by replacing it with the condition of sign-definiteness on trajectories along which asymptotic properties are investigated. A number of theorems are proved in this paper that demonstrate this effect. Our main tool is a theorem on division of tempered distributions by a homogeneous polynomial, preserving the corresponding quasi-asymptotics. The results obtained are used to study the asymptotic behaviour at a boundary point of holomorphic functions in tubular domains over cones.
@article{SM_1995_186_5_a2,
     author = {Yu. N. Drozhzhinov and B. I. Zavialov},
     title = {Theorems of {Hardy{\textendash}Littlewood} type for signed measures on a~cone},
     journal = {Sbornik. Mathematics},
     pages = {675--693},
     year = {1995},
     volume = {186},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_5_a2/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
AU  - B. I. Zavialov
TI  - Theorems of Hardy–Littlewood type for signed measures on a cone
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 675
EP  - 693
VL  - 186
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_5_a2/
LA  - en
ID  - SM_1995_186_5_a2
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%A B. I. Zavialov
%T Theorems of Hardy–Littlewood type for signed measures on a cone
%J Sbornik. Mathematics
%D 1995
%P 675-693
%V 186
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1995_186_5_a2/
%G en
%F SM_1995_186_5_a2
Yu. N. Drozhzhinov; B. I. Zavialov. Theorems of Hardy–Littlewood type for signed measures on a cone. Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 675-693. http://geodesic.mathdoc.fr/item/SM_1995_186_5_a2/

[1] Vladimirov V. S., “Mnogomernoe obobschenie tauberovoi teoremy Khardi i Littlvuda”, Izv. AN SSSR. Ser. matem., 40:5 (1976), 1084–1101 | MR | Zbl

[2] Drozhzhinov Yu. N., Zavyalov B. I., “Tauberovy teoremy dlya obobschennykh funktsii s nositelyami v konusakh”, Matem. sb., 108:1 (1979), 78–90 | MR | Zbl

[3] Yakymiv A. L., “Mnogomernye tauberovy teoremy i ikh primeneniya k vetvyaschimsya protsessam Bellmana–Kharrisa”, Matem. sb., 115:3 (1981), 463–477 | MR | Zbl

[4] Kozlov S. M., “Mnogomernye spektralnye asimptotiki dlya ellipticheskikh operatorov”, DAN SSSR, 268:4 (1983), 789–793 | MR | Zbl

[5] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[6] Vladimirov V. S., Drozhzhinov Yu. N., Zavyalov B. I., Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR

[7] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl

[8] Drozhzhinov Yu. N., Zavyalov B. I., “Tauberova teorema dlya kvaziasimptoticheskikh razlozhenii mer s nositelyami v polozhitelnom oktante”, Matem. sb., 185:2 (1994), 57–87

[9] Zavyalov B. I., “Ob asimptoticheskikh svoistvakh funktsii, golomorfnykh v trubchatykh konusakh”, Matem. sb., 136:1 (1988), 97–114 | MR | Zbl