@article{SM_1995_186_5_a0,
author = {D. Barrios and G. L. Lopes and E. Torrano},
title = {Polynomials generated by a~three-term recurrence relation with asymptotically periodic complex coefficients},
journal = {Sbornik. Mathematics},
pages = {629--659},
year = {1995},
volume = {186},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_5_a0/}
}
TY - JOUR AU - D. Barrios AU - G. L. Lopes AU - E. Torrano TI - Polynomials generated by a three-term recurrence relation with asymptotically periodic complex coefficients JO - Sbornik. Mathematics PY - 1995 SP - 629 EP - 659 VL - 186 IS - 5 UR - http://geodesic.mathdoc.fr/item/SM_1995_186_5_a0/ LA - en ID - SM_1995_186_5_a0 ER -
%0 Journal Article %A D. Barrios %A G. L. Lopes %A E. Torrano %T Polynomials generated by a three-term recurrence relation with asymptotically periodic complex coefficients %J Sbornik. Mathematics %D 1995 %P 629-659 %V 186 %N 5 %U http://geodesic.mathdoc.fr/item/SM_1995_186_5_a0/ %G en %F SM_1995_186_5_a0
D. Barrios; G. L. Lopes; E. Torrano. Polynomials generated by a three-term recurrence relation with asymptotically periodic complex coefficients. Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 629-659. http://geodesic.mathdoc.fr/item/SM_1995_186_5_a0/
[1] Aptekarev A. I., “Asimptoticheskie svoistva mnogochlenov, ortogonalnykh na sisteme konturov, i periodicheskie dvizheniya tsepochek Toda”, Matem. sb., 125 (167):2 (1984), 231–258 | MR
[2] Barrios D., Lopes G., Torrano E., “Location of zeros and asymptotics of polynomials satisfying three-term recurrence relations with complex coefficients”, Matem. sb., 184:11 (1994), 63–92 | MR
[3] Chihara T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach Science Publishers, New York, 1978 | MR | Zbl
[4] Gelfond A. O., Ischislenie konechnykh raznostei, Fizmatgiz, Moskva, 1967 | MR
[5] Geronimo J. S., Van Assche W., “Orthogonal polynomials with asymptotically periodic recurrence coefficients”, J. Approx. Theory, 46 (1986), 251–283 | DOI | MR | Zbl
[6] Gohberg I., Goldberg S., Kaashoek M. A., Classes of Linear Operators, Vol. I, Birkhauser, Berlin, 1990 | MR
[7] Gonchar A. A., “O skhodimosti obobschennykh approksimatsii Pade meromorfnykh funktsii”, Matem. sb., 98 (140):4 (1975), 564–577 | MR | Zbl
[8] Gonchar A. A., Lungu K. N., “Polyusy diagonalnykh approksimatsii Pade i analiticheskoe prodolzhenie funktsii”, Matem. sb., 111 (153):2 (1980), 279–292 | MR | Zbl
[9] Gonchar A. A., “Polyusy strok tablitsy Pade i meromorfnoe prodolzhenie funktsii”, Matem. sb., 115 (157):4 (1981), 590–613 | MR | Zbl
[10] Gonchar A. A., “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 118 (160):4 (1982), 535–556 | MR | Zbl
[11] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, Moskva, 1972 | MR | Zbl
[12] López G., Vavilov V. V., “Survey on recent advances in inverse problems of Padé approximation theory”, Tampa'83, Proc. of the Conf. on Rat. Approx. and Interp., Lect. Notes, 1105, Springer Verlag, Berlin, 1984 | MR
[13] Nevai P., “Orthogonal Polynomials”, Memoirs of the A.M.S., 18, no. 213, Rhode Island, 1979 | MR
[14] Van Assche W., Constructive Methods in the Analysis of Orthogonal Polynomials, Katholieke Universiteit Leuven, 1992
[15] Wall H. S., Analytic Theory of Continued Fractions, Chelsea Pub. Company, N.Y., 1973 | MR