Polynomials generated by a three-term recurrence relation with asymptotically periodic complex coefficients
Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 629-659 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a previous paper of the authors the location of zeros of polynomials generated by a three-term recurrence relation with complex coefficients satisfying rather general conditions was studied. In particular, it was proved there that when these coefficients have limits in the complex plane, there are asymptotics of the ratio as in the Nevai–Blumenthal class of orthogonal polynomials. In this paper the case of asymptotically periodic recurrence coefficients is studied and the results known for the case of real recurrence coefficients are extended. Applications to rational approximation and continued fractions are presented.
@article{SM_1995_186_5_a0,
     author = {D. Barrios and G. L. Lopes and E. Torrano},
     title = {Polynomials generated by a~three-term recurrence relation with asymptotically periodic complex coefficients},
     journal = {Sbornik. Mathematics},
     pages = {629--659},
     year = {1995},
     volume = {186},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_5_a0/}
}
TY  - JOUR
AU  - D. Barrios
AU  - G. L. Lopes
AU  - E. Torrano
TI  - Polynomials generated by a three-term recurrence relation with asymptotically periodic complex coefficients
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 629
EP  - 659
VL  - 186
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_5_a0/
LA  - en
ID  - SM_1995_186_5_a0
ER  - 
%0 Journal Article
%A D. Barrios
%A G. L. Lopes
%A E. Torrano
%T Polynomials generated by a three-term recurrence relation with asymptotically periodic complex coefficients
%J Sbornik. Mathematics
%D 1995
%P 629-659
%V 186
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1995_186_5_a0/
%G en
%F SM_1995_186_5_a0
D. Barrios; G. L. Lopes; E. Torrano. Polynomials generated by a three-term recurrence relation with asymptotically periodic complex coefficients. Sbornik. Mathematics, Tome 186 (1995) no. 5, pp. 629-659. http://geodesic.mathdoc.fr/item/SM_1995_186_5_a0/

[1] Aptekarev A. I., “Asimptoticheskie svoistva mnogochlenov, ortogonalnykh na sisteme konturov, i periodicheskie dvizheniya tsepochek Toda”, Matem. sb., 125 (167):2 (1984), 231–258 | MR

[2] Barrios D., Lopes G., Torrano E., “Location of zeros and asymptotics of polynomials satisfying three-term recurrence relations with complex coefficients”, Matem. sb., 184:11 (1994), 63–92 | MR

[3] Chihara T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach Science Publishers, New York, 1978 | MR | Zbl

[4] Gelfond A. O., Ischislenie konechnykh raznostei, Fizmatgiz, Moskva, 1967 | MR

[5] Geronimo J. S., Van Assche W., “Orthogonal polynomials with asymptotically periodic recurrence coefficients”, J. Approx. Theory, 46 (1986), 251–283 | DOI | MR | Zbl

[6] Gohberg I., Goldberg S., Kaashoek M. A., Classes of Linear Operators, Vol. I, Birkhauser, Berlin, 1990 | MR

[7] Gonchar A. A., “O skhodimosti obobschennykh approksimatsii Pade meromorfnykh funktsii”, Matem. sb., 98 (140):4 (1975), 564–577 | MR | Zbl

[8] Gonchar A. A., Lungu K. N., “Polyusy diagonalnykh approksimatsii Pade i analiticheskoe prodolzhenie funktsii”, Matem. sb., 111 (153):2 (1980), 279–292 | MR | Zbl

[9] Gonchar A. A., “Polyusy strok tablitsy Pade i meromorfnoe prodolzhenie funktsii”, Matem. sb., 115 (157):4 (1981), 590–613 | MR | Zbl

[10] Gonchar A. A., “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 118 (160):4 (1982), 535–556 | MR | Zbl

[11] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, Moskva, 1972 | MR | Zbl

[12] López G., Vavilov V. V., “Survey on recent advances in inverse problems of Padé approximation theory”, Tampa'83, Proc. of the Conf. on Rat. Approx. and Interp., Lect. Notes, 1105, Springer Verlag, Berlin, 1984 | MR

[13] Nevai P., “Orthogonal Polynomials”, Memoirs of the A.M.S., 18, no. 213, Rhode Island, 1979 | MR

[14] Van Assche W., Constructive Methods in the Analysis of Orthogonal Polynomials, Katholieke Universiteit Leuven, 1992

[15] Wall H. S., Analytic Theory of Continued Fractions, Chelsea Pub. Company, N.Y., 1973 | MR