Bifurcations of limit cycles of differential equations admitting an~involutive symmetry
Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 611-627

Voir la notice de l'article provenant de la source Math-Net.Ru

We study local bifurcations of $I$-invariant limit cycles (of codimensions one and two) in families of vector fields in $\mathbb R^n$ that admit an involutive symmetry $I$, where $I^2=\operatorname{id}$, the identity operator.
@article{SM_1995_186_4_a6,
     author = {E. V. Nikolaev},
     title = {Bifurcations of limit cycles of differential equations admitting an~involutive symmetry},
     journal = {Sbornik. Mathematics},
     pages = {611--627},
     publisher = {mathdoc},
     volume = {186},
     number = {4},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_4_a6/}
}
TY  - JOUR
AU  - E. V. Nikolaev
TI  - Bifurcations of limit cycles of differential equations admitting an~involutive symmetry
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 611
EP  - 627
VL  - 186
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_4_a6/
LA  - en
ID  - SM_1995_186_4_a6
ER  - 
%0 Journal Article
%A E. V. Nikolaev
%T Bifurcations of limit cycles of differential equations admitting an~involutive symmetry
%J Sbornik. Mathematics
%D 1995
%P 611-627
%V 186
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_4_a6/
%G en
%F SM_1995_186_4_a6
E. V. Nikolaev. Bifurcations of limit cycles of differential equations admitting an~involutive symmetry. Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 611-627. http://geodesic.mathdoc.fr/item/SM_1995_186_4_a6/