Bifurcations of limit cycles of differential equations admitting an~involutive symmetry
Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 611-627
Voir la notice de l'article provenant de la source Math-Net.Ru
We study local bifurcations of $I$-invariant limit cycles (of codimensions one and two) in families of vector fields in $\mathbb R^n$ that admit an involutive symmetry $I$, where $I^2=\operatorname{id}$, the identity operator.
@article{SM_1995_186_4_a6,
author = {E. V. Nikolaev},
title = {Bifurcations of limit cycles of differential equations admitting an~involutive symmetry},
journal = {Sbornik. Mathematics},
pages = {611--627},
publisher = {mathdoc},
volume = {186},
number = {4},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_4_a6/}
}
E. V. Nikolaev. Bifurcations of limit cycles of differential equations admitting an~involutive symmetry. Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 611-627. http://geodesic.mathdoc.fr/item/SM_1995_186_4_a6/