Asymptotic behaviour of the fundamental solution of a second-order parabolic equation
Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 591-609 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the asymptotic behaviour as $t\to\infty$ of the fundamental solution (FS) $G(x,s,t)$ of the Cauchy problem for the parabolic equation $G_t-G_{xx}+a(x)G=0$, $x\in{\mathbb R}^1$, $t>0$. We suppose that the coefficient $a(x)$ can be written as $x\to\pm\infty$ in the form $a(x)=a_2^\pm x^{-2}+\varphi (x)$, where the function $\phi(x)$ has an asymptotic expansion as $x\to\pm\infty$ in positive powers of $x^{-1}$ and $|\varphi (x)|=o(|x|^{-2})$. We construct and justify the asymptotic expansion of the FS $G(z,s,t)$ as $t\to\infty$ up to any power of $t^{-1}$ for the whole plane $x,s\in{\mathbb R}^1$.
@article{SM_1995_186_4_a5,
     author = {E. F. Lelikova},
     title = {Asymptotic behaviour of the~fundamental solution of a~second-order parabolic equation},
     journal = {Sbornik. Mathematics},
     pages = {591--609},
     year = {1995},
     volume = {186},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_4_a5/}
}
TY  - JOUR
AU  - E. F. Lelikova
TI  - Asymptotic behaviour of the fundamental solution of a second-order parabolic equation
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 591
EP  - 609
VL  - 186
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_4_a5/
LA  - en
ID  - SM_1995_186_4_a5
ER  - 
%0 Journal Article
%A E. F. Lelikova
%T Asymptotic behaviour of the fundamental solution of a second-order parabolic equation
%J Sbornik. Mathematics
%D 1995
%P 591-609
%V 186
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1995_186_4_a5/
%G en
%F SM_1995_186_4_a5
E. F. Lelikova. Asymptotic behaviour of the fundamental solution of a second-order parabolic equation. Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 591-609. http://geodesic.mathdoc.fr/item/SM_1995_186_4_a5/

[1] Hardy G. H., Ramanujan. Twelve lectures on subjects suggested by his life and work, Cambridge University Press, Cambridge, 1940 | MR

[2] Glazman I. M., Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatlit, M., 1963 | MR

[3] Yafaev D. R., “Sverkhstepennoe ubyvanie po vremeni reshenii uravneniya Shredingera”, DAN SSSR, 258:4 (1984), 850–853 | MR

[4] Lelikova E. F., “Asimptotika fundamentalnogo resheniya parabolicheskogo uravneniya pri $t\to \infty $”, Matem. sb., 132 (174):3 (1987), 322–344 | MR

[5] Lelikova E. F., “Ob asimptotike fundamentalnogo resheniya parabolicheskogo uravneniya v kriticheskom sluchae”, Matem. sb., 180 (222):8 (1989), 1119–1130

[6] Lelikova E. F., “Ob asimptotike fundamentalnogo resheniya parabolicheskogo uravneniya v kriticheskom sluchae”, DAN SSSR, 312:3 (1990), 532–535 | MR | Zbl

[7] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[8] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967

[9] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[10] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958

[11] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Fizmatlit, M.–L., 1960 | MR