Asymptotic behaviour of the~fundamental solution of a~second-order parabolic equation
Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 591-609
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the asymptotic behaviour as $t\to\infty$ of the fundamental solution (FS) $G(x,s,t)$ of the Cauchy problem for the parabolic equation $G_t-G_{xx}+a(x)G=0$, $x\in{\mathbb R}^1$, $t>0$. We suppose that the coefficient $a(x)$ can be written as $x\to\pm\infty$ in the form $a(x)=a_2^\pm x^{-2}+\varphi (x)$, where the function $\phi(x)$ has an asymptotic expansion as $x\to\pm\infty$ in positive powers of $x^{-1}$ and $|\varphi (x)|=o(|x|^{-2})$. We construct and justify the asymptotic expansion of the FS $G(z,s,t)$ as
$t\to\infty$ up to any power of $t^{-1}$ for the whole plane $x,s\in{\mathbb R}^1$.
@article{SM_1995_186_4_a5,
author = {E. F. Lelikova},
title = {Asymptotic behaviour of the~fundamental solution of a~second-order parabolic equation},
journal = {Sbornik. Mathematics},
pages = {591--609},
publisher = {mathdoc},
volume = {186},
number = {4},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_4_a5/}
}
E. F. Lelikova. Asymptotic behaviour of the~fundamental solution of a~second-order parabolic equation. Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 591-609. http://geodesic.mathdoc.fr/item/SM_1995_186_4_a5/