Homogenization of a mixed boundary-value problem for the Laplace operator in the case of an insoluble 'limit' problem
Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 511-525 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the asymptotic behaviour of the solution of a mixed boundary-value problem for the Laplace operator in a domain with equal and periodically located stuck regions (with homogeneous Dirichlet data) is studied in two cases: the stuck regions are dispersed over the domain, or they are placed on the boundary. The period of the structure and the size of a stuck region compared with the period are small parameters. In the limit, the stuck regions disappear, and the formal limit problem (the averaged problem) does not necessarily have solutions. In particular, this means that zero is an eigenvalue of the Laplace operator with corresponding boundary conditions. Several terms of the asymptotic expansion of the solution with respect to the small parameters are obtained. Since the limit problem is insoluble, the asymptotics constructed contain terms that increase unboundedly.
@article{SM_1995_186_4_a2,
     author = {A. G. Belyaev and G. A. Chechkin},
     title = {Homogenization of a~mixed boundary-value problem for {the~Laplace} operator in the~case of an~insoluble 'limit' problem},
     journal = {Sbornik. Mathematics},
     pages = {511--525},
     year = {1995},
     volume = {186},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_4_a2/}
}
TY  - JOUR
AU  - A. G. Belyaev
AU  - G. A. Chechkin
TI  - Homogenization of a mixed boundary-value problem for the Laplace operator in the case of an insoluble 'limit' problem
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 511
EP  - 525
VL  - 186
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_4_a2/
LA  - en
ID  - SM_1995_186_4_a2
ER  - 
%0 Journal Article
%A A. G. Belyaev
%A G. A. Chechkin
%T Homogenization of a mixed boundary-value problem for the Laplace operator in the case of an insoluble 'limit' problem
%J Sbornik. Mathematics
%D 1995
%P 511-525
%V 186
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1995_186_4_a2/
%G en
%F SM_1995_186_4_a2
A. G. Belyaev; G. A. Chechkin. Homogenization of a mixed boundary-value problem for the Laplace operator in the case of an insoluble 'limit' problem. Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 511-525. http://geodesic.mathdoc.fr/item/SM_1995_186_4_a2/

[1] Marchenko V. A., Khruslov E. Ya., Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Naukova Dumka, Kiev, 1974 | MR

[2] Cioranescu D., Murat F., “Un terme etrange venu d'ailleurs. 1; 2”, Research Notes in Math., 60, Pitman, 1982, 98–138 ; no. 70, 154–178 | MR | Zbl

[3] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, MGU, M., 1990

[4] Belyaev A. G., “Asimptotika resheniya zadachi Dirikhle dlya uravneniya Puassona v perforirovannoi oblasti s melkimi polostyami”, UMN, 44:4 (1989), 231

[5] Belyaev A. G., O singulyarnykh vozmuscheniyakh kraevykh zadach, Kandidatskaya dissertatsiya, MGU, M., 1990

[6] Belyaev A. G., “Kraevaya zadacha dlya uravneniya Puassona v perforirovannoi oblasti s melkimi vklyucheniyami”, Vestn. MGU. Ser. 1. Matem., mekh., 1991, no. 6, 30–35 | MR

[7] Brillard A., Lobo M., Perez E., “Homogeneisation de Frontieres par Epi-convergence en Elasticite Lineare”, MMAN, 24:1 (1990), 5–26 | MR | Zbl

[8] Damlamian A., Li Ta-Tsien (Li Daqian), “Boundary Homogenization for Elliptic Problems”, J. Math. Pures Appl., 66 (1987), 351–361 | MR | Zbl

[9] Lobo M., Perez E., “Asymptotic Behaviour of an Elastic Body with a Surface Having Small Stuck Regions”, MMAN, 22:4 (1988), 609–624 | MR | Zbl

[10] Chechkin G. A., “O kraevykh zadachakh dlya ellipticheskogo uravneniya vtorogo poryadka s ostsilliruyuschimi granichnymi usloviyami”, Neklassicheskie differentsialnye uravneniya v chastnykh proizvodnykh, IM SOAN SSSR, Novosibirsk, 1988, 95–104 | MR

[11] Chechkin G. A., “Usrednenie reshenii granichnykh zadach s bystro menyayuschimsya tipom granichnykh uslovii”, UMN, 46:6 (1991), 190–191 | MR

[12] Chechkin G. A., “Usrednenie kraevykh zadach s singulyarnym vozmuscheniem granichnykh uslovii”, Matem. sb., 184:6 (1993), 99–150 | MR | Zbl

[13] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[14] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 347–371 | MR