Examples of trigonometric series with non-negative partial sums
Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 485-510

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{a_n\}_{n=1}^\infty$ be a monotone sequence of non-negative real numbers. In this paper the condition $$ a_1>0 \quad\text{and}\quad \sum _{k=1}^n(-1)^{k-1}ka_k\geqslant 0 \quad\text{for all $n\geqslant 1$} $$ are proved to be necessary and sufficient for all partial sums of the trigonometric sine series $\sum _{n=1}^\infty a_n\sin(nx)$ to be positive on the interval $(0,\pi)$. New conditions on the coefficients of a trigonometric cosine series ensuring that all its partial sums are positive on the real axis are presented.
@article{SM_1995_186_4_a1,
     author = {A. S. Belov},
     title = {Examples of trigonometric series with non-negative partial sums},
     journal = {Sbornik. Mathematics},
     pages = {485--510},
     publisher = {mathdoc},
     volume = {186},
     number = {4},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_4_a1/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - Examples of trigonometric series with non-negative partial sums
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 485
EP  - 510
VL  - 186
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_4_a1/
LA  - en
ID  - SM_1995_186_4_a1
ER  - 
%0 Journal Article
%A A. S. Belov
%T Examples of trigonometric series with non-negative partial sums
%J Sbornik. Mathematics
%D 1995
%P 485-510
%V 186
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_4_a1/
%G en
%F SM_1995_186_4_a1
A. S. Belov. Examples of trigonometric series with non-negative partial sums. Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 485-510. http://geodesic.mathdoc.fr/item/SM_1995_186_4_a1/