Examples of trigonometric series with non-negative partial sums
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 485-510
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\{a_n\}_{n=1}^\infty$  be a monotone sequence of non-negative real numbers. In this paper the condition 
$$
a_1>0 \quad\text{and}\quad 
\sum _{k=1}^n(-1)^{k-1}ka_k\geqslant 0 \quad\text{for all $n\geqslant 1$}
$$
are proved to be necessary and sufficient for all partial sums of the trigonometric sine series $\sum _{n=1}^\infty a_n\sin(nx)$ to be positive on the interval $(0,\pi)$. New conditions on the coefficients of a trigonometric cosine series ensuring that all its partial sums are positive on the real axis are presented.
			
            
            
            
          
        
      @article{SM_1995_186_4_a1,
     author = {A. S. Belov},
     title = {Examples of trigonometric series with non-negative partial sums},
     journal = {Sbornik. Mathematics},
     pages = {485--510},
     publisher = {mathdoc},
     volume = {186},
     number = {4},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_4_a1/}
}
                      
                      
                    A. S. Belov. Examples of trigonometric series with non-negative partial sums. Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 485-510. http://geodesic.mathdoc.fr/item/SM_1995_186_4_a1/
