Almost distributive varieties of Lie rings
Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 465-483 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two possible approaches to the description of varieties whose lattice of subvarieties is distributive are discussed, namely, descriptions based on maximal distributive and minimal non-distributive varieties. It is shown that there are no maximal distributive varieties for a wide class of generalized solvable Lie rings but that each non-distributive variety contains an almost distributive subvariety.
@article{SM_1995_186_4_a0,
     author = {D. S. Ananichev},
     title = {Almost distributive varieties of {Lie} rings},
     journal = {Sbornik. Mathematics},
     pages = {465--483},
     year = {1995},
     volume = {186},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_4_a0/}
}
TY  - JOUR
AU  - D. S. Ananichev
TI  - Almost distributive varieties of Lie rings
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 465
EP  - 483
VL  - 186
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_4_a0/
LA  - en
ID  - SM_1995_186_4_a0
ER  - 
%0 Journal Article
%A D. S. Ananichev
%T Almost distributive varieties of Lie rings
%J Sbornik. Mathematics
%D 1995
%P 465-483
%V 186
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1995_186_4_a0/
%G en
%F SM_1995_186_4_a0
D. S. Ananichev. Almost distributive varieties of Lie rings. Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 465-483. http://geodesic.mathdoc.fr/item/SM_1995_186_4_a0/

[1] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[2] Dnestrovskaya tetrad. Nereshennye problemy teorii kolets i modulei, 3-e izd., Novosibirsk, 1982

[3] Ananin A. Z., Kemer A. R., “Mnogoobraziya assotsiativnykh algebr, reshetki podmnogoobrazii kotorykh distributivny”, Sib. matem. zhurn., 17:4 (1976), 723–730 | MR | Zbl

[4] Maltsev Yu. N., “O mnogoobraziyakh assotsiativnykh algebr, reshetka podmnogoobrazii kotorykh nedistributivna”, Matem. issled., 56 (1980), 110–112 | MR | Zbl

[5] Volkov M. V., “Identities in lattices of ring varieties”, Algebra Univers., 23:1 (1986), 32–43 | DOI | MR | Zbl

[6] Volkov M. V., Gein A. G., “Tozhdestva pochti nilpotentnykh kolets Li”, Matem. sb., 118:1 (1982), 132–142 | MR | Zbl

[7] Vaughan-Lee M. R., Some varieties of Lie algebras, D. Phil. thesis, Oxford, 1968

[8] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982 | MR

[9] Zelmanov E. I., “Ob engelevykh algebrakh Li”, Sib. matem. zhurn., 29:5 (1988), 112–117 | MR | Zbl

[10] Volkov M. V., “Struktury mnogoobrazii algebr”, Matem. sb., 109:1 (1979), 60–79 | MR | Zbl

[11] Bakhturin Yu. A., Olshanskii A. Yu., “Tozhdestvennye sootnosheniya v konechnykh koltsakh Li”, Matem. sb., 96:4 (1975), 543–559 | MR | Zbl