Almost distributive varieties of Lie rings
Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 465-483

Voir la notice de l'article provenant de la source Math-Net.Ru

Two possible approaches to the description of varieties whose lattice of subvarieties is distributive are discussed, namely, descriptions based on maximal distributive and minimal non-distributive varieties. It is shown that there are no maximal distributive varieties for a wide class of generalized solvable Lie rings but that each non-distributive variety contains an almost distributive subvariety.
@article{SM_1995_186_4_a0,
     author = {D. S. Ananichev},
     title = {Almost distributive varieties of {Lie} rings},
     journal = {Sbornik. Mathematics},
     pages = {465--483},
     publisher = {mathdoc},
     volume = {186},
     number = {4},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_4_a0/}
}
TY  - JOUR
AU  - D. S. Ananichev
TI  - Almost distributive varieties of Lie rings
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 465
EP  - 483
VL  - 186
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_4_a0/
LA  - en
ID  - SM_1995_186_4_a0
ER  - 
%0 Journal Article
%A D. S. Ananichev
%T Almost distributive varieties of Lie rings
%J Sbornik. Mathematics
%D 1995
%P 465-483
%V 186
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_4_a0/
%G en
%F SM_1995_186_4_a0
D. S. Ananichev. Almost distributive varieties of Lie rings. Sbornik. Mathematics, Tome 186 (1995) no. 4, pp. 465-483. http://geodesic.mathdoc.fr/item/SM_1995_186_4_a0/