Whitney's theorem in the~$L^p$-metric, $0$
Sbornik. Mathematics, Tome 186 (1995) no. 3, pp. 435-445

Voir la notice de l'article provenant de la source Math-Net.Ru

In the original proof of the theorem on local approximation of functions by algebraic polynomials, Whitney estimated the deviation of the function from an interpolating polynomial with equally spaced nodes by means of finite differences. In this article we show how Whitney's idea of choosing nodes depending on a parameter with subsequent averaging can be applied to functions in $L^p$. The methods indicated allow one to obtain an estimate for the speed of approximating functions given on au arc of the unit circle by trigonometric polynomials or splines.
@article{SM_1995_186_3_a7,
     author = {\`E. A. Storozhenko and Yu. V. Kryakin},
     title = {Whitney's theorem in the~$L^p$-metric, $0<p<\infty$},
     journal = {Sbornik. Mathematics},
     pages = {435--445},
     publisher = {mathdoc},
     volume = {186},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_3_a7/}
}
TY  - JOUR
AU  - È. A. Storozhenko
AU  - Yu. V. Kryakin
TI  - Whitney's theorem in the~$L^p$-metric, $0
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 435
EP  - 445
VL  - 186
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_3_a7/
LA  - en
ID  - SM_1995_186_3_a7
ER  - 
%0 Journal Article
%A È. A. Storozhenko
%A Yu. V. Kryakin
%T Whitney's theorem in the~$L^p$-metric, $0
%J Sbornik. Mathematics
%D 1995
%P 435-445
%V 186
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_3_a7/
%G en
%F SM_1995_186_3_a7
È. A. Storozhenko; Yu. V. Kryakin. Whitney's theorem in the~$L^p$-metric, $0